首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a method for predicting the three-dimensional (3-D) structure of proteins from their sequence alone. The method is based on the electrostatic screening model for the stability of the protein main-chain conformation. The free energy of a protein as a function of its conformation is obtained from the potentials of mean force analysis of high-resolution x-ray protein structures. The free energy function is simple and contains only 44 fitted coefficients. The minimization of the free energy is performed by the torsion space Monte Carlo procedure using the concept of hierarchic condensation. The Monte Carlo minimization procedure is applied to predict the secondary, super-secondary, and native 3-D structures of 12 proteins with 28–110 amino acids. The 3-D structures of the majority of local secondary and super-secondary structures are predicted accurately. This result suggests that control in forming the native-like local structure is distributed along the entire protein sequence. The native 3-D structure is predicted correctly for 3 of 12 proteins composed mainly from the α-helices. The method fails to predict the native 3-D structure of proteins with a predominantly β secondary structure. We suggest that the hierarchic condensation is not an appropriate procedure for simulating the folding of proteins made up primarily from β-strands. The method has been proved accurate in predicting the local secondary and super-secondary structures in the blind ab initio 3-D prediction experiment. Proteins 31:74–96, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
The tertiary structure of the alpha-subunit of tryptophan synthase was proposed using a combination of experimental data and computational methods. The vacuum-ultraviolet circular dichroism spectrum was used to assign the protein to the alpha/beta-class of supersecondary structures. The two-domain structure of the alpha-subunit (Miles et al.: Biochemistry 21:2586, 1982; Beasty and Matthews: Biochemistry 24:3547, 1985) eliminated consideration of a barrel structure and focused attention on a beta-sheet structure. An algorithm (Cohen et al.: Biochemistry 22:4894, 1983) was used to generate a secondary structure prediction that was consistent with the sequence data of the alpha-subunit from five species. Three potential secondary structures were then packed into tertiary structures using other algorithms. The assumption of nearest neighbors from second-site revertant data eliminated 97% of the possible tertiary structures; consideration of conserved hydrophobic packing regions on the beta-sheet eliminated all but one structure. The native structure is predicted to have a parallel beta-sheet flanked on both sides by alpha-helices, and is consistent with the available data on chemical cross-linking, chemical modification, and limited proteolysis. In addition, an active site region containing appropriate residues could be identified as well as an interface for beta 2-subunit association. The ability of experimental data to facilitate the prediction of protein structure is discussed.  相似文献   

3.
Physical principles determining the protein structure and protein folding are reviewed: (i) the molecular theory of protein secondary structure and the method of its prediction based on this theory; (ii) the existence of a limited set of thermodynamically favourable folding patterns of α- and β-regions in a compact globule which does not depend on the details of the amino acid sequence; (iii) the moderns approaches to the prediction of the folding patterns of α- and β-regions in concrete proteins; (iv) experimental approaches to the mechanism of protein folding. The review reflects theoretical and experimental works of the author and his collaborators as well as those of other groups.  相似文献   

4.
Lee J  Kim SY  Joo K  Kim I  Lee J 《Proteins》2004,56(4):704-714
A novel method for ab initio prediction of protein tertiary structures, PROFESY (PROFile Enumerating SYstem), is proposed. This method utilizes the secondary structure prediction information of a query sequence and the fragment assembly procedure based on global optimization. Fifteen-residue-long fragment libraries are constructed using the secondary structure prediction method PREDICT, and fragments in these libraries are assembled to generate full-length chains of a query protein. Tertiary structures of 50 to 100 conformations are obtained by minimizing an energy function for proteins, using the conformational space annealing method that enables one to sample diverse low-lying local minima of the energy. We apply PROFESY for benchmark tests to proteins with known structures to demonstrate its feasibility. In addition, we participated in CASP5 and applied PROFESY to four new-fold targets for blind prediction. The results are quite promising, despite the fact that PROFESY was in its early stages of development. In particular, PROFESY successfully provided us the best model-one structure for the target T0161.  相似文献   

5.
Secondary structure prediction of the catalytic domain of matrix metalloproteinases is evaluated in the light of recently published experimentally determined structures. The prediction was made by combining conformational propensity, surface probability, and residue conservation calculated for an alignment of 19 sequences. The position of each observed secondary structure element was correctly predicted with a high degree of accuracy, with a single beta-strand falsely predicted. The domain fold was also anticipated from the prediction by analogy with the structural elements found in the distantly related metalloproteinases thermolysin, astacin, and adamalysin.  相似文献   

6.
We present heuristic-based predictions of the secondary and tertiary structures of the cyclins A, B, and D, representatives of the cyclin superfamily. The list of suggested constraints for tertiary structure assembly was left unrefined in order to submit this report before an announced crystal structure for cyclin A becomes available. To predict these constraints, a master sequence alignment over 270 positions of cyclin types A, B, and D was adjusted based on individual secondary structure predictions for each type. We used new heuristics for predicting aromatic residues at protein-protein interfaces and to identify sequentially distinct regions in the protein chain that cluster in the folded structure. The boundaries of two conjectured domains in the cyclin fold were predicted based on experimental data in the literature. The domain that is important for interaction of the cyclins with cyclin-dependent kinases (CDKs) is predicted to contain six helices; the second domain in the consensus model contains both helices and a β-sheet that is formed by sequentially distant regions in the protein chain. A plausible phosphorylation site is identified. This work represents a blinded test of the method for prediction of secondary and, to a lesser extent, tertiary structure from a set of homologous protein sequences. Evaluation of our predictions will become possible with the publication of the announced crystal structure.  相似文献   

7.
Efforts to predict protein secondary structure have been hampered by the apparent structural plasticity of local amino acid sequences. Kabsch and Sander (1984, Proc. Natl. Acad. Sci. USA 81, 1075–1078) articulated this problem by demonstrating that identical pentapeptide sequences can adopt distinct structures in different proteins. With the increased size of the protein structure database and the availability of new methods to characterize structural environments, we revisit this observation of structural plasticity. Within a set of proteins with less than 50% sequence identity, 59 pairs of identical hexapeptide sequences were identified. These local structures were compared and their surrounding structural environments examined. Within a protein structural class (α/α, β/β, α/β, α + β), the structural similarity of sequentially identical hexapeptides usually is preserved. This study finds eight pairs of identical hexapeptide sequences that adopt β-strand structure in one protein and α-helical structure in the other. In none of the eight cases do the members of these sequence pairs come from proteins within the same folding class. These results have implications for class dependent secondary structure prediction algorithms.  相似文献   

8.
The conformational parametersP k for each amino acid species (j=1–20) of sequential peptides in proteins are presented as the product ofP i,k , wherei is the number of the sequential residues in thekth conformational state (k=-helix,-sheet,-turn, or unordered structure). Since the average parameter for ann-residue segment is related to the average probability of finding the segment in the kth state, it becomes a geometric mean of (P k )av=(P i,k ) 1/n with amino acid residuei increasing from 1 ton. We then used ln(Pk)av to convert a multiplicative process to a summation, i.e., ln(P k ) av =(1/n)P i,k (i=1 ton) for ease of operation. However, this is unlike the popular Chou-Fasman algorithm, which has the flaw of using the arithmetic mean for relative probabilities. The Chou-Fasman algorithm happens to be close to our calculations in many cases mainly because the difference between theirP k and our InP k is nearly constant for about one-half of the 20 amino acids. When stronger conformation formers and breakers exist, the difference become larger and the prediction at the N- and C-terminal-helix or-sheet could differ. If the average conformational parameters of the overlapping segments of any two states are too close for a unique solution, our calculations could lead to a different prediction.  相似文献   

9.
Accurate free energy estimation is essential for RNA structure prediction. The widely used Turner''s energy model works well for nested structures. For pseudoknotted RNAs, however, there is no effective rule for estimation of loop entropy and free energy. In this work we present a new free energy estimation method, termed the pseudoknot predictor in three-dimensional space (pk3D), which goes beyond Turner''s model. Our approach treats nested and pseudoknotted structures alike in one unifying physical framework, regardless of how complex the RNA structures are. We first test the ability of pk3D in selecting native structures from a large number of decoys for a set of 43 pseudoknotted RNA molecules, with lengths ranging from 23 to 113. We find that pk3D performs slightly better than the Dirks and Pierce extension of Turner''s rule. We then test pk3D for blind secondary structure prediction, and find that pk3D gives the best sensitivity and comparable positive predictive value (related to specificity) in predicting pseudoknotted RNA secondary structures, when compared with other methods. A unique strength of pk3D is that it also generates spatial arrangement of structural elements of the RNA molecule. Comparison of three-dimensional structures predicted by pk3D with the native structure measured by nuclear magnetic resonance or X-ray experiments shows that the predicted spatial arrangement of stems and loops is often similar to that found in the native structure. These close-to-native structures can be used as starting points for further refinement to derive accurate three-dimensional structures of RNA molecules, including those with pseudoknots.  相似文献   

10.
We have investigated amino acid features that determine secondary structure: (1) the solvent accessibility of each side chain, and (2) the interaction of each side chain with others one to four residues apart. Solvent accessibility is a simple model that distinguishes residue environment. The pairwise interactions represent a simple model of local side chain to side chain interactions. To test the importance of these features we developed an algorithm to separate alpha-helices, beta-strands, and "other" structure. Single residue and pairwise probabilities were determined for 25,141 samples from proteins with <30% homology. Combining the features of solvent accessibility with pairwise probabilities allows us to distinguish the three structures after cross validation at the 82.0% level. We gain 1.4% to 2.0% accuracy by optimizing the propensities, demonstrating that probabilities do not necessarily reflect propensities. Optimization of residue exposures, weights of all probabilities, and propensities increased accuracy to 84.0%.  相似文献   

11.
The elucidation of the domain content of a given protein sequence in the absence of determined structure or significant sequence homology to known domains is an important problem in structural biology. Here we address how successfully the delineation of continuous domains can be accomplished in the absence of sequence homology using simple baseline methods, an existing prediction algorithm (Domain Guess by Size), and a newly developed method (DomSSEA). The study was undertaken with a view to measuring the usefulness of these prediction methods in terms of their application to fully automatic domain assignment. Thus, the sensitivity of each domain assignment method was measured by calculating the number of correctly assigned top scoring predictions. We have implemented a new continuous domain identification method using the alignment of predicted secondary structures of target sequences against observed secondary structures of chains with known domain boundaries as assigned by Class Architecture Topology Homology (CATH). Taking top predictions only, the success rate of the method in correctly assigning domain number to the representative chain set is 73.3%. The top prediction for domain number and location of domain boundaries was correct for 24% of the multidomain set (+/-20 residues). These results have been put into context in relation to the results obtained from the other prediction methods assessed.  相似文献   

12.
13.
Qin S  He Y  Pan XM 《Proteins》2005,61(3):473-480
We have improved the multiple linear regression (MLR) algorithm for protein secondary structure prediction by combining it with the evolutionary information provided by multiple sequence alignment of PSI-BLAST. On the CB513 dataset, the three states average overall per-residue accuracy, Q(3), reached 76.4%, while segment overlap accuracy, SOV99, reached 73.2%, using a rigorous jackknife procedure and the strictest reduction of eight states DSSP definition to three states. This represents an improvement of approximately 5% on overall per-residue accuracy compared with previous work. The relative solvent accessibility prediction also benefited from this combination of methods. The system achieved 77.7% average jackknifed accuracy for two states prediction based on a 25% relative solvent accessibility mode, with a Mathews' correlation coefficient of 0.548. The improved MLR secondary structure and relative solvent accessibility prediction server is available at http://spg.biosci.tsinghua.edu.cn/.  相似文献   

14.
Protein structure prediction in genomics   总被引:1,自引:0,他引:1  
As the number of completely sequenced genomes rapidly increases, including now the complete Human Genome sequence, the post-genomic problems of genome-scale protein structure determination and the issue of gene function identification become ever more pressing. In fact, these problems can be seen as interrelated in that experimentally determining or predicting or the structure of proteins encoded by genes of interest is one possible means to glean subtle hints as to the functions of these genes. The applicability of this approach to gene characterisation is reviewed, along with a brief survey of the reliability of large-scale protein structure prediction methods and the prospects for the development of new prediction methods.  相似文献   

15.
Refinement of distance geometry (DG) structures of EETI-II (Heitz et al.: Biochemistry 28:2392-2398, 1989), a member of the squash family trypsin inhibitor, have been carried out by restrained molecular dynamics (RMD) in water. The resulting models show better side chain apolar/polar surface ratio and estimated solvation free energy than structures refined "in vacuo." The consistent lower values of residual NMR constraint violations, apolar/polar surface ratio, and solvation free energy for one of these refined structures allowed prediction of the 3D folding and disulfide connectivity of EETI-II. Except for the few first residues for which no NMR constraints were available, this computer model fully agreed with X-ray structures of CMTI-I (Bode et al.: FEBS Lett. 242:285-292, 1989) and EETI-II complexed with trypsin that appeared after the RMD simulation was completed. Restrained molecular dynamics in water is thus proved to be highly valuable for refinement of DG structures. Also, the successful use of apolar/polar surface ratio and of solvation free energy reinforce the analysis of Novotny et al. (Proteins 4:19-30, 1988) and shows that these criteria are useful indicators of correct versus misfolded models.  相似文献   

16.
The interaction of four representative polyanions with parathyroid hormone (PTH) residues 1-84 has been investigated utilizing a variety of spectroscopic and calorimetric techniques. Each of the polyanions employed demonstrate enthalpically driven binding to PTH (1-84) with significant affinity. The polyanions heparin, dextran sulfate, phytic acid, and sucrose octasulfate induce alpha-helical structure in PTH to varying extents depending on the ratio of polyanion to protein employed. Intrinsic and extrinsic fluorescence spectroscopy suggests significant protein tertiary structure alteration upon polyanion binding. Although structural modification occurred upon polyanion binding, PTH colloidal stability was increased depending on the ratio of polyanion to protein used. Nevertheless, the bioactivity of PTH in the presence of various ratios of heparin was not altered. The potential biological significance of PTH/polyanion interactions is discussed.  相似文献   

17.
神经网络在蛋白质二级结构预测中的应用   总被引:3,自引:0,他引:3  
介绍了蛋白质二级结构预测的研究意义,讨论了用在蛋白质二级结构预测方面的神经网络设计问题,并且较详尽地评述了近些年来用神经网络方法在蛋白质二级结构预测中的主要工作进展情况,展望了蛋白质结构预测的前景。  相似文献   

18.
Computational methods in protein structure prediction   总被引:1,自引:0,他引:1  
This review presents the advances in protein structure prediction from the computational methods perspective. The approaches are classified into four major categories: comparative modeling, fold recognition, first principles methods that employ database information, and first principles methods without database information. Important advances along with current limitations and challenges are presented.  相似文献   

19.
Contact order and ab initio protein structure prediction   总被引:1,自引:0,他引:1       下载免费PDF全文
Although much of the motivation for experimental studies of protein folding is to obtain insights for improving protein structure prediction, there has been relatively little connection between experimental protein folding studies and computational structural prediction work in recent years. In the present study, we show that the relationship between protein folding rates and the contact order (CO) of the native structure has implications for ab initio protein structure prediction. Rosetta ab initio folding simulations produce a dearth of high CO structures and an excess of low CO structures, as expected if the computer simulations mimic to some extent the actual folding process. Consistent with this, the majority of failures in ab initio prediction in the CASP4 (critical assessment of structure prediction) experiment involved high CO structures likely to fold much more slowly than the lower CO structures for which reasonable predictions were made. This bias against high CO structures can be partially alleviated by performing large numbers of additional simulations, selecting out the higher CO structures, and eliminating the very low CO structures; this leads to a modest improvement in prediction quality. More significant improvements in predictions for proteins with complex topologies may be possible following significant increases in high-performance computing power, which will be required for thoroughly sampling high CO conformations (high CO proteins can take six orders of magnitude longer to fold than low CO proteins). Importantly for such a strategy, simulations performed for high CO structures converge much less strongly than those for low CO structures, and hence, lack of simulation convergence can indicate the need for improved sampling of high CO conformations. The parallels between Rosetta simulations and folding in vivo may extend to misfolding: The very low CO structures that accumulate in Rosetta simulations consist primarily of local up-down beta-sheets that may resemble precursors to amyloid formation.  相似文献   

20.
Homaeian L  Kurgan LA  Ruan J  Cios KJ  Chen K 《Proteins》2007,69(3):486-498
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号