共查询到20条相似文献,搜索用时 15 毫秒
1.
The tertiary structure of the alpha-subunit of tryptophan synthase was proposed using a combination of experimental data and computational methods. The vacuum-ultraviolet circular dichroism spectrum was used to assign the protein to the alpha/beta-class of supersecondary structures. The two-domain structure of the alpha-subunit (Miles et al.: Biochemistry 21:2586, 1982; Beasty and Matthews: Biochemistry 24:3547, 1985) eliminated consideration of a barrel structure and focused attention on a beta-sheet structure. An algorithm (Cohen et al.: Biochemistry 22:4894, 1983) was used to generate a secondary structure prediction that was consistent with the sequence data of the alpha-subunit from five species. Three potential secondary structures were then packed into tertiary structures using other algorithms. The assumption of nearest neighbors from second-site revertant data eliminated 97% of the possible tertiary structures; consideration of conserved hydrophobic packing regions on the beta-sheet eliminated all but one structure. The native structure is predicted to have a parallel beta-sheet flanked on both sides by alpha-helices, and is consistent with the available data on chemical cross-linking, chemical modification, and limited proteolysis. In addition, an active site region containing appropriate residues could be identified as well as an interface for beta 2-subunit association. The ability of experimental data to facilitate the prediction of protein structure is discussed. 相似文献
2.
O. B. Ptitsyn 《Journal of biosciences》1985,8(1-2):1-13
Physical principles determining the protein structure and protein folding are reviewed: (i) the molecular theory of protein
secondary structure and the method of its prediction based on this theory; (ii) the existence of a limited set of thermodynamically
favourable folding patterns of α- and β-regions in a compact globule which does not depend on the details of the amino acid
sequence; (iii) the moderns approaches to the prediction of the folding patterns of α- and β-regions in concrete proteins;
(iv) experimental approaches to the mechanism of protein folding. The review reflects theoretical and experimental works of
the author and his collaborators as well as those of other groups. 相似文献
3.
Retrospective analysis of a secondary structure prediction: the catalytic domain of matrix metalloproteinases.
下载免费PDF全文

E. E. Hodgkin I. C. Gillman R. J. Gilbert 《Protein science : a publication of the Protein Society》1994,3(6):984-986
Secondary structure prediction of the catalytic domain of matrix metalloproteinases is evaluated in the light of recently published experimentally determined structures. The prediction was made by combining conformational propensity, surface probability, and residue conservation calculated for an alignment of 19 sequences. The position of each observed secondary structure element was correctly predicted with a high degree of accuracy, with a single beta-strand falsely predicted. The domain fold was also anticipated from the prediction by analogy with the structural elements found in the distantly related metalloproteinases thermolysin, astacin, and adamalysin. 相似文献
4.
We present heuristic-based predictions of the secondary and tertiary structures of the cyclins A, B, and D, representatives of the cyclin superfamily. The list of suggested constraints for tertiary structure assembly was left unrefined in order to submit this report before an announced crystal structure for cyclin A becomes available. To predict these constraints, a master sequence alignment over 270 positions of cyclin types A, B, and D was adjusted based on individual secondary structure predictions for each type. We used new heuristics for predicting aromatic residues at protein-protein interfaces and to identify sequentially distinct regions in the protein chain that cluster in the folded structure. The boundaries of two conjectured domains in the cyclin fold were predicted based on experimental data in the literature. The domain that is important for interaction of the cyclins with cyclin-dependent kinases (CDKs) is predicted to contain six helices; the second domain in the consensus model contains both helices and a β-sheet that is formed by sequentially distant regions in the protein chain. A plausible phosphorylation site is identified. This work represents a blinded test of the method for prediction of secondary and, to a lesser extent, tertiary structure from a set of homologous protein sequences. Evaluation of our predictions will become possible with the publication of the announced crystal structure. 相似文献
5.
Bruce I. Cohen Scott R. Presnell Fred E. Cohen 《Protein science : a publication of the Protein Society》1993,2(12):2134-2145
Efforts to predict protein secondary structure have been hampered by the apparent structural plasticity of local amino acid sequences. Kabsch and Sander (1984, Proc. Natl. Acad. Sci. USA 81, 1075–1078) articulated this problem by demonstrating that identical pentapeptide sequences can adopt distinct structures in different proteins. With the increased size of the protein structure database and the availability of new methods to characterize structural environments, we revisit this observation of structural plasticity. Within a set of proteins with less than 50% sequence identity, 59 pairs of identical hexapeptide sequences were identified. These local structures were compared and their surrounding structural environments examined. Within a protein structural class (α/α, β/β, α/β, α + β), the structural similarity of sequentially identical hexapeptides usually is preserved. This study finds eight pairs of identical hexapeptide sequences that adopt β-strand structure in one protein and α-helical structure in the other. In none of the eight cases do the members of these sequence pairs come from proteins within the same folding class. These results have implications for class dependent secondary structure prediction algorithms. 相似文献
6.
Jen Tsi Yang 《Journal of Protein Chemistry》1996,15(2):185-191
The conformational parametersP
k
for each amino acid species (j=1–20) of sequential peptides in proteins are presented as the product ofP
i,k
, wherei is the number of the sequential residues in thekth conformational state (k=-helix,-sheet,-turn, or unordered structure). Since the average parameter for ann-residue segment is related to the average probability of finding the segment in the kth state, it becomes a geometric mean of (P
k
)av=(P
i,k
)
1/n
with amino acid residuei increasing from 1 ton. We then used ln(Pk)av to convert a multiplicative process to a summation, i.e., ln(P
k
)
av
=(1/n)P
i,k
(i=1 ton) for ease of operation. However, this is unlike the popular Chou-Fasman algorithm, which has the flaw of using the arithmetic mean for relative probabilities. The Chou-Fasman algorithm happens to be close to our calculations in many cases mainly because the difference between theirP
k
and our InP
k
is nearly constant for about one-half of the 20 amino acids. When stronger conformation formers and breakers exist, the difference become larger and the prediction at the N- and C-terminal-helix or-sheet could differ. If the average conformational parameters of the overlapping segments of any two states are too close for a unique solution, our calculations could lead to a different prediction. 相似文献
7.
8.
Refinement of distance geometry (DG) structures of EETI-II (Heitz et al.: Biochemistry 28:2392-2398, 1989), a member of the squash family trypsin inhibitor, have been carried out by restrained molecular dynamics (RMD) in water. The resulting models show better side chain apolar/polar surface ratio and estimated solvation free energy than structures refined "in vacuo." The consistent lower values of residual NMR constraint violations, apolar/polar surface ratio, and solvation free energy for one of these refined structures allowed prediction of the 3D folding and disulfide connectivity of EETI-II. Except for the few first residues for which no NMR constraints were available, this computer model fully agreed with X-ray structures of CMTI-I (Bode et al.: FEBS Lett. 242:285-292, 1989) and EETI-II complexed with trypsin that appeared after the RMD simulation was completed. Restrained molecular dynamics in water is thus proved to be highly valuable for refinement of DG structures. Also, the successful use of apolar/polar surface ratio and of solvation free energy reinforce the analysis of Novotny et al. (Proteins 4:19-30, 1988) and shows that these criteria are useful indicators of correct versus misfolded models. 相似文献
9.
Protein structure prediction in genomics 总被引:1,自引:0,他引:1
Jones DT 《Briefings in bioinformatics》2001,2(2):111-125
As the number of completely sequenced genomes rapidly increases, including now the complete Human Genome sequence, the post-genomic problems of genome-scale protein structure determination and the issue of gene function identification become ever more pressing. In fact, these problems can be seen as interrelated in that experimentally determining or predicting or the structure of proteins encoded by genes of interest is one possible means to glean subtle hints as to the functions of these genes. The applicability of this approach to gene characterisation is reviewed, along with a brief survey of the reliability of large-scale protein structure prediction methods and the prospects for the development of new prediction methods. 相似文献
10.
神经网络在蛋白质二级结构预测中的应用 总被引:3,自引:0,他引:3
介绍了蛋白质二级结构预测的研究意义,讨论了用在蛋白质二级结构预测方面的神经网络设计问题,并且较详尽地评述了近些年来用神经网络方法在蛋白质二级结构预测中的主要工作进展情况,展望了蛋白质结构预测的前景。 相似文献
11.
12.
13.
14.
The results of a protein structure prediction contest are reviewed. Twelve different groups entered predictions on 14 proteins of known sequence whose structures had been determined but not yet disseminated to the scientific community. Thus, these represent true tests of the current state of structure prediction methodologies. From this work, it is clear that accurate tertiary structure prediction is not yet possible. However, protein fold and motif prediction are possible when the motif is recognizably similar to another known structure. Internal symmetry and the information inherent in an aligned family of homologous sequences facilitate predictive efforts. Novel folds remain a major challenge for prediction efforts. © 1995 Wiley-Liss, Inc. 相似文献
15.
A systematic study of helix-helix packing in a comprehensive database of protein structures revealed that the side chains inside helix-helix interfaces on average are shorter than those in the noninterface parts of the helices. The study follows our earlier study of this effect in transmembrane helices. The results obtained on the entire database of protein structures are consistent with those obtained on the transmembrane helices. The difference in the length of interface and noninterface side chains is small but statistically significant. It indicates that helices, if viewed along their main axis, statistically are not circular, but have a flattened interface. This effect brings the helices closer to each other and creates a tighter structural packing. The results provide an interesting insight into the aspects of protein structure and folding. 相似文献
16.
The hierarchy of lattice Monte Carlo models described in the accompanying paper (Kolinski, A., Skolnick, J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18:338–352, 1994) is applied to the simulation of protein folding and the prediction of 3-dimensional structure. Using sequence information alone, three proteins have been successfully folded: the B domain of staphylococcal protein A, a 120 residue, monomeric version of ROP dimer, and crambin. Starting from a random expanded conformation, the model proteins fold along relatively well-defined folding pathways. These involve a collection of early intermediates, which are followed by the final (and rate-determining) transition from compact intermediates closely resembling the molten globule state to the native-like state. The predicted structures are rather unique, with native-like packing of the side chains. The accuracy of the predicted native conformations is better than those obtained in previous folding simulations. The best (but by no means atypical) folds of protein A have a coordinate rms of 2.25 Å from the native Cα trace, and the best coordinate rms from crambin is 3.18 Å. For ROP monomer, the lowest coordinate rms from equivalent Cαs of ROP dimer is 3.65 Å. Thus, for two simple helical proteins and a small α/β protein, the ability to predict protein structure from sequence has been demonstrated. © 1994 John Wiley & Sons, Inc. 相似文献
17.
Macdonald JR Johnson WC 《Protein science : a publication of the Protein Society》2001,10(6):1172-1177
We have investigated amino acid features that determine secondary structure: (1) the solvent accessibility of each side chain, and (2) the interaction of each side chain with others one to four residues apart. Solvent accessibility is a simple model that distinguishes residue environment. The pairwise interactions represent a simple model of local side chain to side chain interactions. To test the importance of these features we developed an algorithm to separate alpha-helices, beta-strands, and \"other\" structure. Single residue and pairwise probabilities were determined for 25,141 samples from proteins with <30% homology. Combining the features of solvent accessibility with pairwise probabilities allows us to distinguish the three structures after cross validation at the 82.0% level. We gain 1.4% to 2.0% accuracy by optimizing the propensities, demonstrating that probabilities do not necessarily reflect propensities. Optimization of residue exposures, weights of all probabilities, and propensities increased accuracy to 84.0%. 相似文献
18.
Previous results from equilibrium and kinetic studies of the folding of bovine growth hormone (bGH) have demonstrated that bGH does not follow a simple two-step folding mechanism. These results are summarized and interpreted according to the "molten globule" model. The molten globule state of bGH is characterized as a folding intermediate which is largely alpha-helical, retains a compact hydrodynamic radius, has packing of the aromatic side chains that is similar to the unfolded state, and possesses a solvent-exposed hydrophobic surface along helix 106-127 that readily leads to association. 相似文献
19.
20.
Construction of hypothetical three-dimensional structure of P2Y1 receptor based on Fourier transform analysis 总被引:1,自引:0,他引:1
G protein-coupled receptors constitute a large family of homologous transmembrane proteins that represents one of the most important classes of confirmed drug targets. For novel drug discovery, the 3D structure of target protein is indispensable. To construct hypothetical 3D structures of G protein-coupled receptors, several prediction methods have been proposed. But none of the them has confirmed a correct ligand binding site. In this study we constructed the 3D structure of bovine rhodopsin using the prediction method proposed by Donnelly et al., with some modification. We found that our 3D model showed a good agreement with the reported retinal binding site. Using the similar method, we constructed the 3D structure of the P2Y1 receptor; one of the G protein-coupled receptors, and showed a binding site of an endogenous ligand, ADP, on the basis of the 3D model and in vitro experimental data. These results should be valuable for design of a specific antagonist for P2Y1 receptor. 相似文献