共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Seki N Toh U Kawaguchi K Ninomiya M Koketsu M Watanabe K Aoki M Fujii T Nakamura A Akagi Y Kusukawa J Kage M Shirouzu K Yamana H 《Journal of cellular biochemistry》2012,113(7):2346-2355
4',5,7-Trihydroxy-3',5'-dimethoxyflavone (Tricin), a naturally occurring flavone, has anti-inflammatory potential and exhibits diverse biological activities including antigrowth activity in several human cancer cell lines and cancer chemopreventive effects in the gastrointestinal tract of mice. The present study aimed to investigate the biological actions of tricin on hepatic stellate cells (HSCs) in vitro, exploring its potential as a treatment of liver fibrosis, since HSC proliferation is closely related to the progression of hepatic fibrogenesis in chronic liver diseases leading to irreversible liver cirrhosis and hepatocellular carcinoma. Tricin inhibited platelet-derived growth factor (PDGF)-BB-induced cell proliferation by blocking cell cycle progression and cell migration in the human HSC line LI90 and culture-activated HSCs. It also reduced the phosphorylation of PDGF receptor β and the downstream signaling molecules ERK1/2 and Akt, which might be due to its tyrosine kinase inhibitor properties rather than inhibition of the direct binding between PDGF-BB and its receptor. Our findings suggest that tricin might be beneficial in HSC-targeting therapeutic or chemopreventive applications for hepatic fibrosis. 相似文献
3.
Elena Tibaldi Francesca Zonta Luciana Bordin Elisa Magrin Enrico Gringeri Umberto Cillo Giuseppe Idotta Mario Angelo Pagano Anna Maria Brunati 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
The dimerization and auto-transphosphorylation of platelet-derived growth factor receptor (PDGFR) upon engagement by platelet-derived growth factor (PDGF) activates signals promoting the mitogenic response of hepatic stellate cells (HSCs) due to liver injury, thus contributing to the development of hepatic fibrosis. We demonstrate that the tyrosine phosphatases Src homology 2 domain-containing phosphatase 1 and 2 (SHP-1 and SHP-2) act as crucial regulators of a complex signaling network orchestrated by PDGFR activation in a spatio-temporal manner with diverse and opposing functions in HSCs. In fact, silencing of either phosphatase shows that SHP-2 is committed to PDGFR-mediated cell proliferation, whereas SHP-1 dephosphorylates PDGFR hence abrogating the downstream signaling pathways that result in HSC activation. In this regard, SHP-1 as an off-switch of PDGFR signaling appears to emerge as a valuable molecular target to trigger as to prevent HSC proliferation and the fibrogenic effects of HSC activation. We show that boswellic acid, a multitarget compound with potent anti-inflammatory action, exerts an anti-proliferative effect on HSCs, as in other cell models, by upregulating SHP-1 with subsequent dephosphorylation of PDGFR-β and downregulation of PDGF-dependent signaling after PDGF stimulation. Moreover, the synergism resulting from the combined use of boswellic acid and imatinib, which directly inhibits PDGFR-β activity, on activated HSCs offers new perspectives for the development of therapeutic strategies that could implement molecules affecting diverse players of this molecular circuit, thus paving the way to multi-drug low-dose regimens for liver fibrosis. 相似文献
4.
5.
Autocrine loop between TGF-beta1 and IL-1beta through Smad3- and ERK-dependent pathways in rat pancreatic stellate cells 总被引:3,自引:0,他引:3
Aoki Hiroyoshi; Ohnishi Hirohide; Hama Kouji; Ishijima Takako; Satoh Yukihiro; Hanatsuka Kazunobu; Ohashi Akira; Wada Shinichi; Miyata Tomohiko; Kita Hiroto; Yamamoto Hironori; Osawa Hiroyuki; Sato Kiichi; Tamada Kiichi; Yasuda Hiroshi; Mashima Hirosato; Sugano Kentaro 《American journal of physiology. Cell physiology》2006,290(4):C1100
Pancreatic stellate cells (PSCs) are activated during pancreatitis and promote pancreatic fibrosis by producing and secreting ECMs such as collagen and fibronectin. IL-1 has been assumed to participate in pancreatic fibrosis by activating PSCs. Activated PSCs secrete various cytokines that regulate PSC function. In this study, we have examined IL-1 secretion from culture-activated PSCs as well as its regulatory mechanism. RT-PCR and ELISA have demonstrated that PSCs express IL-1 mRNA and secrete IL-1 peptide. Inhibition of TGF-1 activity secreted from PSCs by TGF-1-neutralizing antibody attenuated IL-1 secretion from PSCs. Exogenous TGF-1 increased IL-1 expression and secretion by PSCs in a dose-dependent manner. Adenovirus-mediated expression of dominant-negative (dn)Smad2/3 expression reduced both basal and TGF-1-stimulated IL-1 expression and secretion by PSCs. Coexpression of Smad3 with dnSmad2/3 restored IL-1 expression and secretion by PSCs, which were attenuated by dnSmad2/3 expression. In contrast, coexpression of Smad2 with dnSmad2/3 did not alter them. Furthermore, inhibition of IL-1 activity secreted from PSCs by IL-1-neutralizing antibody attenuated TGF-1 secretion from PSCs. Exogenous IL-1 enhanced TGF-1 expression and secretion by PSCs. IL-1 activated ERK, and PD-98059, a MEK1 inhibitor, blocked IL-1 enhancement of TGF-1 expression and secretion by PSCs. We propose that an autocrine loop exists between TGF-1 and IL-1 in activated PSCs through Smad3- and ERK-dependent pathways. fibrosis; cytokine; chronic pancreatitis 相似文献
6.
Signaling pathways involved in isoprostane-mediated fibrogenic effects in rat hepatic stellate cells
Despite evidence supporting a potential role for F2-isoprostanes (F2-IsoP's) in liver fibrosis, their signaling mechanisms are poorly understood. We have previously provided evidence that F2-IsoP's stimulate hepatic stellate cell (HSC) proliferation and collagen hyperproduction by activation of a modified form of isoprostane receptor homologous to the classic thromboxane receptor (TP). In this paper, we examined which signal transduction pathways are set into motion by F2-IsoP's to exert their fibrogenic effects. HSCs were isolated from rat liver, cultured to their activated myofibroblast-like phenotype, and then treated with the isoprostane 15-F2t-isoprostane (15-F2t-IsoP). Inositol trisphosphate (IP3) and adenosine 3′,5′-cyclic monophosphate (cAMP) levels were determined using commercial kits. Mitogen-activated protein kinase (MAPK) and cyclin D1 expression was assessed by Western blotting. Cell proliferation and collagen synthesis were determined by measuring [3H]thymidine and [3H]proline incorporation, respectively. 15-F2t-IsoP elicited an activation of extracellular-signal-regulated kinase (ERK), p38 MAPK, and c-Jun NH2-terminal kinase (JNK), which are known to be also regulated by G-protein-coupled receptors. Preincubation with specific ERK (PD98059), p38 (SB203580), or JNK (SP600125) inhibitors prevented 15-F2t-IsoP-induced cell proliferation and collagen synthesis. 15-F2t-IsoP decreased cAMP levels within 30 min, suggesting binding to the TPβ isoform and activation of Giα protein. Also, 15-F2t-IsoP increased IP3 levels within a few minutes, suggesting that the Gq protein pathway is also involved. In conclusion, the fibrogenic effects of F2-IsoP's in HSCs are mediated by downstream activation of MAPKs, through TP binding that couples via both Gqα and Giα proteins. Targeting TP receptor, or its downstream pathways, may contribute to preventing oxidative damage in liver fibrosis. 相似文献
7.
Nishikawa T Tomiya T Ohtomo N Inoue Y Ikeda H Tejima K Watanabe N Tanoue Y Omata M Fujiwara K 《Biochemical and biophysical research communications》2007,363(4):978-982
Amino acids regulate cellular functions in a variety of cell types. Most notably, leucine stimulates protein production through the mammalian target of rapamycin (mTOR)-dependent signaling pathway. We investigated the effect of amino acids on hepatocyte growth factor (HGF) production. Treatment with glutamine and proline, as well as leucine, increased HGF levels in the culture medium of a rat hepatic stellate cell clone in a dose-dependent manner. Up-regulation of phosphorylation of 70 kDa ribosomal protein S6 kinase and eukaryotic initiation factor 4E-binding protein 1 was not apparent in the cells after treatment with glutamine or proline. When rats received injections of glutamine or proline, hepatic and circulating HGF levels increased and peaked around 12 h after treatment. Glutamine and proline may have the potential to stimulate HGF production but the mechanism underlying this stimulation seems not to be through the mTOR-dependent signaling pathway. 相似文献
8.
Engagement of alphavbeta3 integrin regulates proliferation and apoptosis of hepatic stellate cells 总被引:9,自引:0,他引:9
Zhou X Murphy FR Gehdu N Zhang J Iredale JP Benyon RC 《The Journal of biological chemistry》2004,279(23):23996-24006
Hepatic stellate cells are the major source of the extracellular matrix that accumulates in fibrotic liver. During progressive liver fibrosis, hepatic stellate cells proliferate, but during resolution of fibrosis there is extensive stellate cell apoptosis that coincides with degradation of the liver scar. We have examined the possibility that the fate of stellate cells is influenced by the extracellular matrix through the intermediary of alpha(v)beta(3) integrin. alpha(v)beta(3) integrin was expressed by activated, myofibroblastic rat and human stellate cells in culture. Antagonism of this integrin using neutralizing antibodies, echistatin, or small inhibitory RNA to silence alpha(v) subunit expression inhibited stellate cell proliferation and their expression of proliferating cell nuclear antigen and activated forms of p44 and p42 MAPK. These alpha(v)beta(3) antagonists also increased apoptosis of cultured stellate cells, and this was associated with an increase in the BAX/BCL-2 protein ratio, induction of nuclear DNA fragmentation, and activation of intracellular caspase-3. Expression of tissue inhibitor of metalloproteinases-1 by activated stellate cells was reduced by the alpha(v)beta(3) antagonists, while matrix metalloproteinase-9 synthesis was enhanced. Stellate cells incubated with active recombinant matrix metalloproteinase-9 showed enhanced apoptosis, while cells treated with a synthetic inhibitor of this protease showed increased survival. Our studies suggest that alpha(v)beta(3) integrin regulates the fate of hepatic stellate cells. Degradation of alpha(v)beta(3) ligands surrounding activated stellate cells during resolution of liver fibrosis might decrease alpha(v)beta(3) integrin ligation, suppressing stellate cell proliferation and inducing a fibrolytic, matrix metalloproteinase-secreting phenotype that may prime stellate cells for apoptosis. 相似文献
9.
Marianna D A Ga?a Xiaoying Zhou Razao Issa Kishanee Kiriella John P Iredale R Christopher Benyon 《Matrix biology》2003,22(3):229-239
During liver fibrosis hepatic stellate cells become activated, transforming into proliferative myofibroblastic cells expressing type I collagen and alpha-smooth muscle actin. They become the major producers of the fibrotic neomatrix in injured liver. This study examines if activated stellate cells are a committed phenotype, or whether they can become deactivated by extracellular matrix. Stellate cells isolated from normal rat liver proliferated and expressed mRNA for activation markers, alpha-smooth muscle actin, type I procollagen and tissue inhibitor of metalloproteinases-1 following 5-7 day culture on plastic, but culture on Matrigel suppressed proliferation and mRNA expression. Activated stellate cells were recovered from plastic by trypsinisation and replated onto plastic, type I collagen films or Matrigel. Cells replated on plastic and type I collagen films proliferated and remained morphologically myofibroblastic, expressing alpha-smooth muscle actin and type I procollagen. However, activated cells replated on Matrigel showed <30% of the proliferative rate of these cells, and this was associated with reduced cellular expression of proliferating cell nuclear antigen and phosphorylation of mitogen-activated protein kinase in response to serum. Activated HSC replated on Matrigel for 3-7 days progressively reduced their expression of mRNA for type I procollagen and alpha-smooth muscle actin and both became undetectable after 7 days. We conclude that basement membrane-like matrix induces deactivation of stellate cells. Deactivation represents an important potential mechanism mediating recovery from liver fibrosis in vivo where type I collagen is removed from the liver and stellate cells might re-acquire contact with their normal basement membrane-like pericellular matrix. 相似文献
10.
Leptin facilitates proliferation of hepatic stellate cells through up-regulation of platelet-derived growth factor receptor 总被引:13,自引:0,他引:13
Lang T Ikejima K Yoshikawa M Enomoto N Iijima K Kitamura T Takei Y Sato N 《Biochemical and biophysical research communications》2004,323(3):1091-1095
In the present study, we investigated the effect of leptin on proliferation of hepatic stellate cells (HSCs) in vitro. Proliferation of 3-day cultured rat HSCs was assessed by incorporation of 5-bromo-2'-deoxyuridine (BrdU) into the nuclei. The percentages of BrdU-positive cells were increased in the presence of PDGF-BB (5 ng/ml) for 8h as expected. Co-incubation with leptin (10-100 nM) potentiates this PDGF-dependent increase in BrdU positive cells in a dose-dependent manner. Messenger RNA for PDGF receptor alpha and beta subunits was increased almost 2- to 3-fold by incubation with leptin for 6h. Further, pre-incubation with leptin for 6h enhanced PDGF-induced increases in phospho-p44/42 MAP kinase and phospho-Akt levels in a dose-dependent manner. In the same condition, however, leptin per se did not increase phospho-STAT 3 and phospho-p44/42 MAP kinase levels. Instead, leptin increased phospho-Akt levels in HSCs within 30 min, suggesting that the phosphatidylinositol 3 kinase (PI3K)/Akt pathway is involved in the mechanism by which leptin accelerates the proliferation of HSCs. In conclusion, the present study clearly indicated that leptin potentiates PDGF-dependent proliferative responses of HSCs in vitro. 相似文献
11.
Guo Yan-Lin; Kang Baobin; Williamson John R. 《American journal of physiology. Cell physiology》1999,276(2):C435
We reported previously that Ro-318220 blocked expression ofmitogen-activated protein kinase phosphatase-1 (MKP-1) induced by tumornecrosis factor- (TNF-) and subsequently caused apopotosis inmesangial cells (Y.-L. Guo, B. Kang, and J. R. Williamson. J. Biol. Chem. 273: 10362-10366,1998). These data support our hypothesis that a TNF--induciblephosphatase may be responsible for preventing sustained activation ofc-Jun NH2-terminal protein kinase(JNK) and consequent cell death in these cells (Y.-L. Guo, K. Baysal,B. Kang, L.-J. Yang, and J. R. Williamson. J. Biol. Chem. 273: 4027-4034, 1998). In this study, weinvestigated the involvement of protein kinase C (PKC) in regulation ofMKP-1 expression in mesangial cells together with effects on viability.Although originally characterized as a PKC inhibitor, Ro-318220inhibited TNF--induced MKP-1 expression through a mechanism otherthan blocking the PKC pathway. Furthermore, inhibition of the PKCpathway neither significantly affected TNF--induced MKP-1 expression nor made cells susceptible to toxic effect of TNF-. Thus PKC activation is not essential for cells to achieve the resistance toTNF- cytotoxicity displayed by normal mesangial cells. However, activation of PKC by phorbol 12-myristate 13-acetate (PMA) dramatically increased cellular resistance to the apoptotic effect of TNF-. Coincidentally, PMA stimulated MKP-1 expression and suppressed JNKactivation. Therefore, PMA-induced MKP-1 expression may contribute tothe protective effect of PMA. These results provide a mechanistic explanation for previous documentation that PKC activation can rescuesome cells from apopotosis. 相似文献
12.
Yu Fujun Dong Buyuan Dong Peihong He Yanghuan Zheng Jianjian Xu Ping 《Molecular and cellular biochemistry》2020,463(1-2):115-126
Molecular and Cellular Biochemistry - Shrm4 is a protein that is exclusively expressed in polarized tissues. The physiological function of Shrm4 in the brain was required to be elucidated. Thus, we... 相似文献
13.
14.
Hypoxia is a common environmental stress factor and is also associated with various physiological and pathological conditions such as fibrogenesis. The activation of hepatic stellate cells (HSCs) is the key event in the liver fibrogenesis. In this study, the behavior of human HSCs LX-2 in low oxygen tension (1% O2) was analyzed. Upon hypoxia, the expression of HIF-1alpha and VEGF gene was induced. The result of Western blotting showed that the expression of alpha-SMA was increased by hypoxic stimulation. Furthermore, the expression of MMP-2 and TIMP-1 genes was increased. Hypoxia also elevated the protein expression of the collagen type I in LX-2 cells. The analysis of TGF-beta/Smad signaling pathway showed that hypoxia potentiated the expression of TGF-beta1 and the phosphorylation status of Smad2. Gene expression profiles of LX-2 cells induced by hypoxia were obtained by using cDNA microarray technique. 相似文献
15.
16.
Tomiya T Nishikawa T Inoue Y Ohtomo N Ikeda H Tejima K Watanabe N Tanoue Y Omata M Fujiwara K 《Biochemical and biophysical research communications》2007,358(1):176-180
Branched chain amino acids modulate various cellular functions in addition to providing substrates for the production of proteins. We examined the mechanism underlying the stimulation by leucine of hepatocyte growth factor (HGF) production by hepatic stellate cells. Both p70 S6 kinase activity and phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) were up-regulated rapidly after leucine treatment of a rat hepatic stellate cell clone. No such activation was observed following treatment with valine or isoleucine. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), suppressed leucine-induced activation of p70 S6 kinase and 4E-BP1 and negated the stimulatory effect of leucine on HGF production. An mTOR-dependent signaling pathway mediates the stimulatory effect of leucine on the production of HGF by hepatic stellate cells. 相似文献
17.
Xin-Jie Hao Cheng-Zhen Xu Jin-Tai Wang Xiao-Jie Li Ming-Min Wang 《Journal of receptor and signal transduction research》2013,33(5-6):455-461
AbstractTo investigate the effect of microRNA 21 (miR-21) on hepatic stellate cells (HSCs) proliferation and apoptosis, and further to study its potential mechanisms. LX-2 cells were divided into miR-21 mimic group (Mimic), miR-21 mimic negative control group (NM), miR-21 inhibitor group (Inhibitor), miR-21 inhibitor negative control group (NC), and blank control group (Control). The cell proliferation was detected by CCK-8 assay and the cell migration and invasion were detected by scratch and transwell assay. Cell cycle and apoptosis were detected by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β1 were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation, apoptosis, and phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway related genes and proteins were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. The cells proliferation, migration, and invasion were promoted in Mimic group. The levels of IL-6, TNF-α, and TGF-β1 were increased after miR-21 administration. The expression of α-smooth muscle actin (SMA) and collagen 1 (Colla1) were increased, while Bax/B-cell lymphoma (Bcl)-2 ratio and programed cell death 4 (PDCD4) were reduced after miR?21 treatment. Meanwhile, the mRNA and protein expression of PTEN were reduced and PI3K/AKT pathway been promoted. Our study demonstrated that miR-21 could promote proliferation and inhibit apoptosis of HSCs, and its mechanism may be related to PTEN/PI3K/AKT pathway. 相似文献
18.
David D. Myles Peter Strong Garry D. Stratton Ian F. Skidmore Mary C. Sugden 《Bioscience reports》1984,4(5):441-450
Isolated hepatocytes from 24-h-starved rats were used to assess the possible effect of Ahe hypoglycaemic agent 3-mercaptopicolinate on flux through the hepatic pyruvate dehydrogenase complex. Increasing the extraceIIular pyruvate concentration from 1 mM to 2 mM or 5 mM resulted in an increase in flux through pyruvate dehydrogenase and the tricarboxylic acid cycle as measured by14CO2 evolution from [1-14C]pyruvate and [3-14C]pyruvate. Gluconeogenesis was inhibited by 3-mercaptopicolinate from both 1 mM and 2 mM pyruvate, but significant increases in malate and citrate concentrations only occurred in cells incubated with 1 mM pyruvate. Flux through pyruvate dehydrogenase was stimulated by 3-mercaptopicolinate with 1 mM pyruvate but was unaltered with 2 mM pyruvate. Dichloroacetate stimulated flux through pyruvate dehydrogenase with no effect on gluconeogenesis in the presence of I mM pyruvate. There was no effect of 3-mercaptopicolinate, administered in vivo, to 24-h-starved rats on the activity of pyruvate dehydrogenase in freeze-clamped heart or liver tissue, although the drug did decrease blood glucose concentration and increase the blood concentrations of lactate and alanine. Dichloroacetate, administered in vivo to 24-h-starved rats, increased the activity of pyruvate dehydrogenase in freeze-clamped heart and liver, and caused decreases in the blood concentrations of glucose, lactate , and alanine. The results suggest that 3-mercaptopicolinate increases flux through hepatocyte pyruvate dehydrogenase by an indirect mechanism. 相似文献
19.
Liming Shen Aochu Yang Pengwei Yao Xiaohong Sun Cheng Chen Cuiping Mo Lei Shi Youjiao Chen Qiong Liu 《Biometals》2014,27(4):753-762
Nephrogenic systemic fibrosis (NSF) is a fibrosing disorder disease developed in patients with underlying renal insufficiency following exposure to gadolinium-based contrast agents (GBCAs). Previous studies have demonstrated that GdCl3 can promote NIH3T3 fibroblast cell proliferation, which provide a new clue to the role of GBCAs in the development of NSF. In the present study, we further clarify the molecular mechanism of Gd-promoted proliferation. The results showed that intervention with the Rac inhibitor NSC23766 abrogated Gd-promoted proliferation. The levels of active Rac1 significantly increased in Gd-treated cells detected by pull-down assays. In addition, the phosphorylation of Akt was significantly elevated in the treatment group, which was blocked by NSC23766. NSC23766 also reduced the migration of NIH3T3 cells enhanced by Gd. Moreover, the F-actin cytoskeleton was strengthened and the mitotic cell numbers was significantly increased after exposure to Gd. These results suggest that Rac and PI3K/Akt signaling pathways, as well as integrin-mediated signal pathway may play important roles in Gd-induced cell proliferation. In addition, under serum-free condition, Gd could decrease ROS accumulation and increase NIH3T3 cell survival. 相似文献