首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
CNS receptors for thyrotropin-releasing hormone (TRH) and its analogs are likely to mediate the experimentally and clinically observed net excitatory effect of these peptides on lower motor neurons. Previous findings suggest that several types of TRH receptors with distinct TRH analog specificities may be present in rat CNS. In particular, based on competition isotherm assays with unlabeled analog gamma-butyrolactone-gamma-carbonyl-L-histidyl-L-prolineamide (DN-1417). Funatsu et al. claim the existence of a limbic forebrain site that binds this peptide and TRH with high affinity but that does not bind [3-methyl-histidyl2]-TRH (MeTRH). Using saturation and competition isotherm experiments, we have examined the binding of [3H]TRH and [3H]DN-1417 in three regions of rat CNS: pyriform cortex/amygdala, limbic forebrain, and lumbosacral spinal cord. In all three regions, saturation assays with [3H]TRH (0.4-100 nM) resolved only a single, saturable receptor with high affinity (KD = 12-14 nM) for TRH; in no case could more than one saturable site be identified. When [3H]DN-1417 was substituted as the assay ligand, no high-affinity binding component for this analog could be detected in the three regions. Competition curves for the binding of unlabeled DN-1417 to limbic forebrain and lumbosacral spinal cord ([3H]TRH as assay ligand) were monophasic (not biphasic like those of Funatsu et al.) and indicative of low-affinity binding of DN-1417 in these regions (Ki values = 2-3 microM; in agreement with values obtained in similar assays with [3H]MeTRH).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The calcium-dependent release of [3H]dopamine ([3H]DA) elicited by field stimulation or potassium is modulated through activation of stereoselective inhibitory DA autoreceptors of the D-2 subtype that are pharmacologically different from the D-1 DA receptor subtype linked to the stimulation of adenylate cyclase (EC 4.6.1.1). The D-2 DA autoreceptors appear to be endogenously activated by DA because DA receptor antagonists such as S-sulpiride increased the stimulation-evoked release of [3H]DA. Nanomolar concentrations of norepinephrine (NE) and epinephrine (E) inhibited in a concentration-dependent manner the electrical stimulation-evoked release of [3H]DA. The inhibitory effect of these catecholamines was not modified by S-sulpiride, which, on the contrary, selectively antagonized the inhibition of [3H]DA release elicited by exogenous DA. Phentolamine or (+/-)-propranolol did not affect the release of [3H]DA from rabbit retina. The alpha antagonist phentolamine competitively antagonized the inhibitory effect of both NE and E, which suggests that these catecholamines activate alpha receptors in retina. The decrease by catecholamines of the calcium-dependent release of [3H]DA appears not to involve beta adrenoceptors because their inhibitory effect was not modified by propranolol. Under identical experimental conditions (i.e., nomifensine, 30 microM), serotonin did not modify the stimulated release of [3H]DA. In conclusion, in the rabbit retina, DA autoreceptors of the D-2 subtype appear to modulate endogenously released DA whereas inhibitory presynaptic alpha receptors might be of pharmacological importance as sites of action for retinal or blood-borne catecholamines.  相似文献   

3.
K S Funatsu  K Inanaga 《Peptides》1987,8(2):319-325
Nanomolar concentration of thyrotropin-releasing hormone (TRH) in vitro caused a significant reduction of [3H]apomorphine binding sites (70% of the control) in the rat striatum and the limbic forebrain. [3H]Spiperone binding was not affected by TRH. On the other hand, dopamine and apomorphine displaced [3H]TRH binding partially, suggesting the presence of a TRH receptor subpopulation that has a high affinity for dopamine agonist. Most of the neuroleptics displaced [3H]TRH binding dose-dependently in the micromolar range. (-)-Sulpiride had no affinity to TRH receptors. These findings suggest that one of the important roles of TRH as a neuromodulator is to modulate receptors for classical neurotransmitters, and this receptor-receptor interaction may be of importance in explaining the well known stimulating effects of TRH on the dopaminergic system.  相似文献   

4.
Since previous work had shown that brain D2 3,4-dihydroxyphenylethylamine (dopamine) receptors were only partly converted from their high-affinity state to their low-affinity state, we here tested whether it was possible to obtain a complete 100% conversion of these receptors into their low-affinity state. It was first essential to resolve the components of [3H]spiperone binding to dopaminergic sites and nondopaminergic sites in rat striatal homogenates. In the presence of 50 microM S-sulpiride (to occlude the dopaminergic sites), therefore, we first determined that the residual binding of [3H]spiperone (approximately 20%) was inhibited by serotonergic agonists much more effectively than dopamine or noradrenaline, thus identifying the serotonergic component of [3H]spiperone binding. Thus, dopamine (or ADTN) inhibited the binding of [3H]spiperone at a high-affinity site (with dissociation constant of 10 nM dopamine), at a low-affinity site (with dissociation constant of 2,000 nM dopamine), and at the serotonergic site (with dissociation constant of 50,000 nM dopamine). In the absence of sodium ions, the high-affinity site was about 50% occupied by [3H]spiperone, and guanine nucleotide had no effect on this proportion. In the presence of 120 mM NaCl, however, the high-affinity site was reduced to 15% and guanine nucleotide completely eliminated this high-affinity site, 100% of the sites having been completely converted to their low-affinity state. Using [3H]N-propyl-norapomorphine to label the high-affinity state of the dopamine receptor, 50% conversion into the low-affinity state occurred at 45 mM LiCl, 69 mM NaCl, and 202 mM KCl. We conclude that it is possible to convert brain D2 dopamine receptors completely into their low-affinity state, in the presence of NaCl and a guanine nucleotide, providing that appropriate allowance is made for the serotonergic component of [3H]spiperone binding.  相似文献   

5.
The benzodiazepines (BZDs) chlordiazepoxide (CDE), diazepam (DZM), and flurazepam (FLM) inhibited receptor binding for thyrotropin-releasing hormone (TRH) with low micromolar potency. In contrast, numerous other categories of drugs were previously shown to be inactive. Scatchard analysis of competition data suggested that the BZDs reduced TRH receptor affinity, consistent with competitive inhibition. Receptors from amygdala, retina, and pituitary appeared more sensitive to inhibition by BZDs than those from hypothalamus, hippocampus, spinal cord, or cerebellum. The latter four regions also gave shallower inhibition curves. CDE revealed an apparently biphasic dissociation of [3-Me-His2]TRH([3H]MeTRH) from amygdala membranes at 4 degrees C, with kinetics similar to those with TRH. These results suggest that TRH receptors in the brain are heterogeneous and that certain BZDs in high therapeutic concentrations may exert central effects through actions at TRH receptors or coupled proteins.  相似文献   

6.
The effects of dopamine on the release of thyrotropin-releasing hormone (TRH) from the rat retina in vitro were studied. The rat retina was incubated in the medium 199 (pH 7.4) with 1.0 mg/ml of bacitracin and 100 micrograms/ml of ascorbic acid. The amount of TRH release into the medium was measured by radioimmunoassay. The TRH release from the rat retina was inhibited significantly in a dose-related manner with the addition of dopamine, but not with pimozide. The inhibitory effects of dopamine on TRH release from the rat retina were blocked with an addition of pimozide to the medium. The elution profile of methanol-extracted rat retina on sephadex G-10 was identical to that of synthetic TRH. From these findings it is concluded that the dopaminergic system inhibits TRH release from the rat retina in vitro.  相似文献   

7.
C R Parker  A Capdevila 《Peptides》1984,5(4):701-706
In the current study, we found evidence for the existence of binding sites for TRH in synaptic membrane preparations of several regions of the postmortem adult human brain. High levels of specific binding (fmol [3H]Me-TRH/mg protein/2 hr) were found in limbic structures: amygdala (7.1 +/- 0.6, Mean +/- SE), hippocampus (2.8 +/- 0.3), and temporal cortex (2.4 +/- 0.8). Intermediate levels of binding were found in the hypothalamus and nucleus accumbens whereas binding was low to undetectable in frontal and occipital cortex, cerebellum, pons, medulla and corpus striatum. Binding of the radioligand was linear over protein concentrations of 0.05-1.5 mg, and greater than 6 hr of incubation was required to achieve maximal binding. In the amygdala, binding was inhibited in the presence of TRH and Me-TRH but not in the presence of up to 1 microM concentrations of cyclo (His-Pro), TRH-OH, pGlu-His or peptides unrelated to TRH. Pretreatment of amygdala synaptic membranes with detergents, proteases or phospholipases disrupted [3H]Me-TRH binding; pretreatment with DNase or collagenase had no effect on binding. Saturation and association/dissociation analyses of the binding of [3H]Me-TRH to purified amygdala synaptic membranes revealed the presence of a high affinity (KD = 2.0 nM), low capacity (Bmax = 180 +/- 16 fmoles/mg protein) binding site. These results demonstrate that a highly specific membrane associated receptor for TRH is present in the adult human brain. The specific role that this receptor plays in brain function remains to be elucidated.  相似文献   

8.
3,4-Dihydroxyphenylethylamine (dopamine) D2 receptors, solubilized from bovine striatal membranes using a cholic acid-NaCl combination, exhibited the typical pharmacological characteristics of both agonist and antagonist binding. The rank order potency of the agonists and antagonists to displace [3H]spiroperidol binding was the same as that observed with membrane-bound receptors. Computer-assisted analysis of the [3H]spiroperidol/agonist competition curves revealed the retention of high- and low-affinity states of the D2 receptor in the solubilized preparations and the proportions of receptor subpopulations in the two affinity states were similar to those reported in membrane. Guanine nucleotide almost completely converted the high-affinity sites to low-affinity sites for the agonists. The binding of the high-affinity agonist [3H]N-n-propylnorapomorphine ([3H]NPA) was clearly demonstrated in the solubilized preparations for the first time. Addition of guanylyl-imidodiphosphate completely abolished the [3H]NPA binding. When the solubilized receptors were subjected to diethylaminoethyl-Sephacel chromatography, the dopaminergic binding sites eluted in two distinct peaks, showing six- to sevenfold purification of the receptors in the major peak. Binding studies performed on both peaks indicated that the receptor subpopulation present in the first peak may have a larger proportion of high-affinity binding sites than the second peak. The solubilized preparation also showed high-affinity binding of [35S]guanosine-5'-(gamma-thio)triphosphate, a result suggesting the presence of guanine nucleotide binding sites, which may interact with the solubilized D2 receptors. These data are consistent with the retention of the D2 receptor-guanine nucleotide regulatory protein complex in the solubilized preparations and should provide a suitable model system to study the receptor-effector interactions.  相似文献   

9.
Neurochemical alterations, which may be associated with the development of diabetic retinal dysfunction, were investigated using streptozotocin (STZ)-induced hyperglycemia in rats. Young male Wistar rats, weighing 100-150 g, were made diabetic with daily intraperitoneal injections of STZ (30 mg/kg) for 5 days. This treatment caused a continuous hyperglycemia (400-600 mg/dl) and suppressed gain in body weight. Nine weeks after the STZ treatment, a significant increment in retinal valine and a decline in phenylalanine were noted, while the concentrations of other neuroactive amino acids, such as gamma-aminobutyric acid and aspartic acid, in the retina remained unchanged. On the other hand, the concentration of retinal dopamine (DA) was found to decrease significantly from the third week of hyperglycemia, when [3H]spiperone binding showed a tendency to increase in the retinal particulate fraction. However, the activities of tyrosine hydroxylase and aromatic L-amino acid decarboxylase (AADC) and the uptake of [3H]tyrosine showed no alteration in the retina of diabetic rats. The accumulation rate of 3,4-dihydroxyphenylalanine (DOPA) in vivo in the retina of diabetic rats, measured following the administration of the AADC inhibitor m-hydroxybenzyl-hydrazine (100 mg/kg i.p.), was also unchanged. Although [3H]DA uptake by retinal tissue was similar in control and diabetic animals, the spontaneous efflux of [3H]DA from the retina was found to be significantly accelerated in STZ-treated animals. In addition, the release of preloaded [3H]DA, elicited by repeated photic stimulation, was significantly attenuated in retina from diabetic rats. These results suggest that an accelerated efflux of DA, possibly leading to the depletion of DA from the retinal DA system, may account for early retinal dysfunctions known to occur in diabetic subjects.  相似文献   

10.
Abstract— The specific binding of [3H]spiperone and [3H]domperidone, as defined by 1 μ m -(+)butaclamol, was compared in homogenates of bovine retina and caudate nucleus. Scatchard analyses of saturation data for [3H]spiperone binding yielded dissociation constants ( K d) of 0.35 n m in the retina and 0.64 n m in the caudate nucleus. Comparison of the maximum number of binding sites (Bmax) present in each tissue indicated that the density of sites in bovine caudate nucleus (270 fmol/mg protein) was approximately three times higher than in bovine retina (92 fmol/mg protein). This difference was even more marked in guinea pig tissues, with a ratio of 7:1 between corpus striatum and retina. The pharmacological analysis of [3H]spiperone binding in both the bovine retina and caudate nucleus indicated an interaction with dopaminergic rather than serotonergic sites. However, inhibition curves obtained to dopaminergic agonists in the bovine retina were significantly steeper than those observed in the bovine caudate nucleus, as reflected in the greater Hill coefficients obtained for these agents in the retina. Furthermore, only a small amount of specific [3H]domperidone binding was observed in either the bovine caudate nucleus or the guinea pig striatum, whilst no specific [3H]domperidone binding was detectable in homogenates of either bovine or guinea pig retina. These data suggest that the retina possesses only a small population of dopaminergic D2 sites and that these binding sites may differ from those present in the caudate nucleus.  相似文献   

11.
The role of the hypothalamic tripeptide L-prolyl-L-leucyl-glycinamide (PLG) in modulating the agonist binding to bovine striatal dopamine D2 receptor was investigated using a selective high-affinity agonist, n-propylnorapomorphine (NPA). PLG caused an enhancement in [3H]NPA binding in striatal membranes in a dose-dependent manner, the maximum effect being observed at 10(-7)-10(-6) M concentration of the tripeptide. The Scatchard analysis of [3H]NPA binding to membranes preincubated with 10(-6) M PLG revealed a significant increase in the affinity of the agonist binding sites. In contrast, there was no effect of PLG on the binding pattern of the antagonist [3H]spiroperidol. The antagonist versus agonist competition curves analyzed for agonist high- and low-affinity states of the receptor displayed an increase in the population and affinity of the high-affinity form of the receptor with PLG treatment. The low-affinity sites concomitantly decreased with relatively small change in the affinity for the agonists. Almost similar results were obtained when either NPA or apomorphine was used in the competition experiments. A partial antagonistic effect of PLG on 5'-guanylylimidodiphosphate [Gpp(NH)p]-induced inhibition of high-affinity agonist binding was also observed, as the ratio of high- to low-affinity forms of the receptor was significantly higher in the PLG-treated membranes compared to the controls. Direct [3H]NPA binding experiments demonstrated that PLG attenuated the Gpp(NH)p-induced inhibition of agonist binding by increasing the EC50 of the nucleotide (concentration that inhibits 50% of the specific binding). No effect of PLG on high-affinity [3H]NPA binding, however, could be observed when the striatal membranes were preincubated with Gpp(NH)p.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of [3H]-ATP to [3H]-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC50 values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC50 values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D2 dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity.  相似文献   

13.
To identify the involvement of dopamine receptors in the transmembrane signaling of the adenosine receptor-G protein-adenylate cyclase system in the CNS, we examined the effects of pertussis toxin (islet-activating protein, IAP) and apomorphine on A1 adenosine agonist (-)N6-R-[3H]phenylisopropyladenosine ([3H]PIA) and antagonist [3H]xanthine amine congener ([3H]XAC) binding activity and adenylate cyclase activity in cerebral cortex membranes of the rat brain. Specific binding to a single class of sites for [3H]XAC with a dissociation constant (KD) of 6.0 +/- 1.3 nM was observed. The number of maximal binding sites (Bmax) was 1.21 +/- 0.13 pmol/mg protein. Studies of the inhibition of [3H]XAC binding by PIA revealed the presence of two classes of PIA binding states, a high-affinity state (KD = 2.30 +/- 1.16 nM) and a low-affinity state (KD = 1.220 +/- 230 nM). Guanosine 5'-(3-O-thio)triphosphate or IAP treatment reduced the number of the high-affinity state binding sites without altering the KD for PIA. Apomorphine (100 microM) increased the KD value 10-fold and decreased Bmax by approximately 20% for [3H]PIA. The effect of apomorphine on the KD value increase was irreversible and due to a conversion from high-affinity to low-affinity states for PIA. The effect was dose dependent and was mediated via D2 dopamine receptors, since the D2 antagonist sulpiride blocked the phenomenon. The inhibitory effect of PIA on adenylate cyclase activity was abolished by apomorphine treatment. There was no effect of apomorphine on displacement of [3H]quinuclidinyl benzilate (muscarinic ligand) binding by carbachol. These data suggest that A1 adenosine receptor binding and function are selectively modified by D2 dopaminergic agents.  相似文献   

14.
The promethazine-sensitive [3H]mepyramine binding was used to determine the presence of histamine H1 receptors in membranes from bovine retina. Specific mepyramine binding to retinal membranes was reversible, saturable and of high affinity. The apparent dissociation constant (KD = 2.2 +/- 0.4 nM) and the density of binding sites (Bmax = 60.9 +/- 5.1 fmol/mg protein), obtained in equilibrium studies, were similar to those found in bovine brain cortex. Binding was stereospecific and the inhibitory potencies of H1 and H2 antagonists indicated that [3H] mepyramine binding sites in the retina have characteristics of H1 receptors.  相似文献   

15.
It is known that nicotine can activate several subtypes of release-regulating presynaptic nicotinic receptors (nAChRs) including those situated on central noradrenergic, dopaminergic, cholinergic and glutamatergic axon terminals. The objective of this study was to investigate the effects of chronic administration of (-)nicotine on the function of the above autoreceptors and heteroreceptors using rat superfused synaptosomes. In hippocampal synaptosomes prelabelled with [3H]noradrenaline (NA) the nicotine-evoked overflow of [3H]NA was higher in rats treated with nicotine for 10 days (via osmotic mini-pumps) than in vehicle-treated rats. In striatal synaptosomes, prelabelled with [3H]dopamine (DA), chronic nicotine did not modify the releasing effect of nicotine. No significant change was observed in experiments with synaptosomes from nucleus accumbens prelabelled with [3H]DA. Exposure of hippocampal synaptosomes prelabelled with [3H]choline to nicotine elicited release of [3H]acetylcholine; this effect was almost abolished in synaptosomes from animals administered nicotine for 10 days, suggesting down-regulation of nicotinic autoreceptors. In hippocampal synaptosomes prelabelled with [3H]D-aspartate, the releasing effect of epibatidine following chronic nicotine treatment did not differ from that in controls. The K+-evoked exocytotic release of the neurotransmitters tested was not modified by long-term nicotine administration. The results show that chronic nicotine differentially affects the function of release-regulating nAChR subtypes.  相似文献   

16.
Binding proteins for retinoic acid and retinol were separated from a supernatant prepared from bovine retina. Fraction IV from DEAE-cellulose chromatography bound exogenous [3H] retinoic acid which could not be effectively displaced by retinol, retinal, retinyl acetate or palmitate, but which was readily displaced with excess retinoic acid. [3H] Retinol was bound by fraction V from DEAE-cellulose chromatography and was not displaced by retinal, retinoic acid, retinyl acetate or retinyl palmitate, but was readily displaced by excess retinol. Unlike bovine serum retinol-binding protein, neither intracellular binding protein formed a complex with purified human serum prealbumin. The supernatant from bovine retinas was estimated to contain five times more retinoic acid binding than retinol binder.  相似文献   

17.
Transport of 3H-labelled thyrotropin-releasing hormone (TRH) across the blood-brain barrier was studied in the ipsilateral perfused in situ guinea pig forebrain. The unidirectional transfer constant (Kin) calculated from the multiple time brain uptake analysis ranged from 1.14 X 10(-3) to 1.22 X 10(-3) ml min-1 g-1, in the parietal cortex, caudate nucleus, and hippocampus. Regional Kin values for [3H]TRH were significantly reduced by 43-48% in the presence of an aminopeptidase and amidase inhibitor, 2 mM bacitracin, suggesting an enzymatic degradation of tripeptide during interaction with the blood-brain barrier. In the presence of unlabelled 1 mM TRH and 2 mM bacitracin together, a reduction of [3H]TRH regional Kin values similar to that obtained with 2 mM bacitracin alone was obtained . L-Prolinamide, the N-terminal residue of tripeptide, at a 10 mM level had no effect on the kinetics of entry of [3H]TRH into the brain. The data indicate an absence of a specific saturable transport mechanism for TRH presented to the luminal side of the blood-brain barrier. It is concluded that intact TRH molecule may slowly penetrate the blood-brain barrier, the rate of transfer being some three times higher than that of D-mannitol.  相似文献   

18.
A ligand affinity matrix has been developed and utilized to purify the dopamine D2 receptor approx. 2100 fold from bovine striatal membranes. 3-[2-Aminoethyl]-8-[3-(4-fluorobenzoyl)propyl]-4-oxo-1-phenyl-1,3,8- triazaspiro[4.5]decan-4-one (AES) was synthesized and used to prepare the affinity matrix by coupling to epoxy-activated Sepharose 6B (AES-Sepharose). AES (Ki approximately 1.7 nM) is similar in potency to the parent compound, spiperone (Ki approximately 0.8 nM), in competing for [3H]spiperone-binding activity. AES has no significant potency in competing for the dopamine D1 receptor as assessed by competition for [3H]SCH23390 binding (Ki greater than 1 microM). Covalent photoaffinity labeling of the dopamine D2 receptor in bovine striatal membranes with N-(p-azido-m-[125I]iodophenethyl)spiperone [( 125I]N3-NAPS) was prevented by AES at nanomolar concentrations. The dopamine D2 receptor was solubilized from bovine striatal membranes using 0.25% cholate in the presence of high ionic strength, followed by precipitation and subsequent treatment with 0.5% digitonin. Nearly 100% of the [3H]spiperone-binding activity in the cholate-digitonin solubilized preparation was absorbed at a receptor-to-resin ratio of 2:1 (v/v). Dopamine D2 receptor was eluted from the affinity resin using a competing dopaminergic antagonist molecule, haloperidol. Recovery of dopamine D2 receptor activity from the affinity matrix was approx. 9% of the activity adsorbed to the resin. The [3H]spiperone-binding activity in AES-Sepharose affinity purified preparations is saturable and of high affinity (0.2 nM). Affinity-purified preparations maintain the ligand-binding characteristics of a dopamine D2 receptor as assessed by agonist and antagonist competition for [3H]spiperone binding.  相似文献   

19.
Dopamine Release via Protein Kinase C Activation in the Fish Retina   总被引:2,自引:2,他引:0  
Calcium-dependent phospholipid-sensitive protein kinase [protein kinase C (PKC)] was partially purified from the carp (Cyprinus carpio) retina through DE 52 ion exchange and Cellulofine gel filtration chromatography. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) activated PKC in the nanomolar range. A major 38-kDa protein in the retinal supernatants (105,000 g) was phosphorylated in vitro by PKC during a short period (3 min). Other phosphoproteins also appeared during a further prolonged period (greater than 15 min). Rod-bipolar and dopamine (DA) interplexiform cells in the fish retina were immunoreactive to a monoclonal antibody to PKC (alpha/beta-subtype). The PKC antibody recognized a 78-kDa native PKC enzyme by means of an immunoblotting method. Subsequently, the effects of two kinds of PKC activators were investigated on [3H]DA release from retinal cell fractions containing DA cells that had been preloaded with [3H]DA. A phorbol ester (TPA) induced a calcium- and dose-dependent [3H]DA release during a short period (2 min), with the minimal effective dose being approximately 1 nM. Other phorbols having no tumor-promoting activity, such as 4 beta-phorbol and 4 alpha-phorbol 12,13-didecanoate, were ineffective on [3H]DA release. A synthetic diacylglycerol [1-oleoyl-2-acetylglycerol (OAG)], which is an endogenous PKC activator, was also able to induce a significant release of [3H]DA. Furthermore, TPA was found to release endogenous DA from isolated fish retina by a highly sensitive HPLC with electrochemical detection method. The OAG- or TPA-induced [3H]DA or DA release was completely blocked by inhibitors of PKC, such as 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7) and staurosporine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Binding proteins for retinoic acid and retinol were separated from a supernatant prepared from bovine retina. Fraction IV from DEAE-cellulose chromatography bound exogenous [3H] retinoic acid which could not be effectively displayed by retinol, retinal, retinyl acetate or palmitate, but which was readily displaced with excess retinoic acid. [3H] Retinol was bound by fraction V from DEAE-cellulose chromatography and was not displaced by retinal, retinoic acid, retinyl acetate or retinyl palmitate, but was readily displaced by excess retinol. Unlike bovine serum retinol-binding protein, neither intracellular binding protein formed a complex with purified human serum prealbumin. The supernatant from bovine retinas was estimated to contain five times more retinoic acid binding than retinol binder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号