首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoskeletal protein talin, which provides a direct link between integrins and actin filaments, has been shown to contain two distinct binding sites for integrin beta subunits. Here, we report the precise delimitation and a first functional analysis of the talin rod domain integrin-binding site. Partially overlapping cDNAs covering the entire human talin gene were transiently expressed as DsRed fusion proteins in Chinese hamster ovary cells expressing alpha(IIb)beta(3), linked to green fluorescent protein (GFP). Two-color fluorescence analysis of the transfected cells, spread on fibrinogen, revealed distinct subcellular staining patterns including focal adhesion, actin filament, and granular labeling for different talin fragments. The rod domain fragment G (residues 1984-2344), devoid of any known actin- or vinculin-binding sites, colocalized with beta(3)-GFP in focal adhesions. Direct in vitro interaction of fragment G with native platelet integrin alpha(IIb)beta(3) or with the recombinant wild type, but not the Y747A mutant beta(3) cytoplasmic tail, linked to glutathione S-transferase, was demonstrated by surface plasmon resonance analysis and pull-down assays, respectively. Here, we demonstrate for the first time the in vivo relevance of this interaction by fluorescence resonance energy transfer between beta(3)-GFP and DsRed-talin fragment G. Further in vitro pull-down studies allowed us to map out the integrin-binding site within fragment G to a stretch of 130 residues (fragment J, residues 1984-2113) that also localized to focal adhesions. Finally, we show by a cell biology approach that this integrin-binding site within the talin rod domain is important for beta(3)-cytoskeletal interactions but does not participate in alpha(IIb)beta(3) activation.  相似文献   

2.
Following platelet aggregation, integrin alpha(IIb)beta(3) becomes associated with the platelet cytoskeleton. The conserved NPLY sequence represents a potential beta-turn motif in the beta(3) cytoplasmic tail and has been suggested to mediate the interaction of beta(3) integrins with talin. In the present study, we performed a double mutation (N744Q/P745A) in the integrin beta(3) subunit to test the functional significance of this beta-turn motif. Chinese hamster ovary cells were co-transfected with cDNA constructs encoding mutant beta(3) and wild type alpha(IIb). Cells expressing either wild type (A5) or mutant (D4) alpha(IIb)beta(3) adhered to fibrinogen; however, as opposed to control A5 cells, adherent D4 cells failed to spread, form focal adhesions, or initiate protein tyrosine phosphorylation. To investigate the role of the NPLY motif in talin binding, we examined the ability of the mutant alpha(IIb)beta(3) to interact with talin in a solid phase binding assay. Both wild type and mutant alpha(IIb)beta(3), purified by RGD affinity chromatography, bound to a similar extent to immobilized talin. Additionally, purified talin failed to interact with peptides containing the AKWDTANNPLYK sequence indicating that the talin binding domain in the integrin beta(3) subunit does not reside in the NPLY motif. In contrast, specific binding of talin to peptides containing the membrane-proximal HDRKEFAKFEEERARAK sequence of the beta(3) cytoplasmic tail was observed, and this interaction was blocked by a recombinant protein fragment corresponding to the 47-kDa N-terminal head domain of talin (rTalin-N). In addition, RGD affinity purified platelet alpha(IIb)beta(3) bound dose-dependently to immobilized rTalin-N, indicating that an integrin-binding site is present in the talin N-terminal head domain. Collectively, these studies demonstrate that the NPLY beta-turn motif regulates post-ligand binding functions of alpha(IIb)beta(3) in a manner independent of talin interaction. Moreover, talin was shown to bind through its N-terminal head domain to the membrane-proximal sequence of the beta(3) cytoplasmic tail.  相似文献   

3.
The phosphotyrosine binding-like domain of talin activates integrins   总被引:1,自引:0,他引:1  
Cellular regulation of the ligand binding affinity of integrin adhesion receptors (integrin activation) depends on the integrin beta cytoplasmic domains (tails). The head domain of talin binds to several integrin beta tails and activates integrins. This head domain contains a predicted FERM domain composed of three subdomains (F1, F2, and F3). An integrin-activating talin fragment was predicted to contain the F2 and F3 subdomains. Both isolated subdomains bound specifically to the integrin beta3 tail. However, talin F3 bound the beta3 tail with a 4-fold higher affinity than talin F2. Furthermore, expression of talin F3 (but not F2) in cells led to activation of integrin alpha(IIb)beta3. A molecular model of talin F3 indicated that it resembles a phosphotyrosine-binding (PTB) domain. PTB domains recognize peptide ligands containing beta turns, often formed by NPXY motifs. NPX(Y/F) motifs are highly conserved in integrin beta tails, and mutations that disrupt this motif interfere with both integrin activation and talin binding. Thus, integrin binding to talin resembles the interactions of PTB domains with peptide ligands. These resemblances suggest that the activation of integrins requires the presence of a beta turn at NPX(Y/F) motifs conserved in integrin beta cytoplasmic domains.  相似文献   

4.
Talin1 is a large cytoskeletal protein that links integrins to actin filaments through two distinct integrin binding sites, one present in the talin head domain (IBS1) necessary for integrin activation and a second (IBS2) that we have previously mapped to talin residues 1984-2113 (fragment J) of the talin rod domain (1 Tremuth, L., Kreis, S., Melchior, C., Hoebeke, J., Ronde, P., Plancon, S., Takeda, K., and Kieffer, N. (2004) J. Biol. Chem. 279, 22258-22266), but whose functional role is still elusive. Using a bioinformatics and cell biology approach, we have determined the minimal structure of IBS2 and show that this integrin binding site corresponds to 23 residues located in alpha helix 50 of the talin rod domain (residues 2077-2099). Alanine mutation of 2 highly conserved residues (L2094A/I2095A) within this alpha helix, which disrupted the alpha-helical structure of IBS2 as demonstrated by infrared spectroscopy and limited trypsin proteolysis, was sufficient to prevent in vivo talin fragment J targeting to alphaIIbbeta3 integrin in focal adhesions and to inhibit in vitro this association as shown by an alphaIIbbeta3 pulldown assay. Moreover, expression of a full-length mouse green fluorescent protein-talin LI/AA mutant in mouse talin1(-/-) cells was unable to rescue the inability of these cells to assemble focal adhesions (in contrast to green fluorescent protein-talin wild type) despite the presence of IBS1. Our data provide the first direct evidence that IBS2 in the talin rod is essential to link integrins to the cytoskeleton.  相似文献   

5.
Talin establishes a major link between integrins and actin filaments and contains two distinct integrin binding sites: one, IBS1, located in the talin head domain and involved in integrin activation and a second, IBS2, that maps to helix 50 of the talin rod domain and is essential for linking integrin beta subunits to the cytoskeleton ( Moes, M., Rodius, S., Coleman, S. J., Monkley, S. J., Goormaghtigh, E., Tremuth, L., Kox, C., van der Holst, P. P., Critchley, D. R., and Kieffer, N. (2007) J. Biol. Chem. 282, 17280-17288 ). Through the combined approach of mutational analysis of the beta3 integrin cytoplasmic tail and the talin rod IBS2 site, SPR binding studies, as well as site-specific antibody inhibition experiments, we provide evidence that the integrin beta3-talin rod interaction relies on a helix-helix association between alpha-helix 50 of the talin rod domain and the membrane-proximal alpha-helix of the beta3 integrin cytoplasmic tail. Moreover, charge complementarity between the highly conserved talin rod IBS2 lysine residues and integrin beta3 glutamic acid residues is necessary for this interaction. Our results support a model in which talin IBS2 binds to the same face of the beta3 subunit cytoplasmic helix as the integrin alphaIIb cytoplasmic tail helix, suggesting that IBS2 can only interact with the beta3 subunit following integrin activation.  相似文献   

6.
The interactions between platelet integrin alpha IIb beta 3 and fibrinogen (Fg) mediate a range of adhesive reactions, which are necessary for platelet aggregation and fibrin clot retraction. The binding site for alpha IIb beta 3 resides in the gamma C domain of Fg. In our previous work we have identified a novel binding site in the gamma C domain, gamma 370-383 (P3), for integrin alpha IIb beta 3 and have demonstrated that the P3 sequence together with the C-terminal gamma C sequence 408AGDV411 accounts for the full binding of alpha IIb beta 3. In our present study, in order to define the amino acid residues in P3 involved in the interaction with alpha IIb beta 3, we have used SPOT-synthesis analyses. Libraries consisting of peptides covering P3 were created and probed with radiolabeled alpha IIb beta 3. Screening of the libraries showed that several positively charged residues may be critical for interaction of P3 with integrin alpha IIb beta 3.  相似文献   

7.
Integrin cytoplasmic tails regulate integrin activation that is required for high affinity binding with ligands. The interaction of the integrin beta subunit tail with a cytoplasmic protein, talin, largely contributes to integrin activation. Here we report the cooperative interaction of the beta3 membrane-proximal and -distal residues in regulation of talin-mediated alpha IIb beta3 activation. Because a chimeric integrin, alpha IIb beta3/beta1, in which the beta3 tail was replaced with the beta1 tail was constitutively active, we searched for the residues responsible for integrin activation among the residues that differed between the beta3 and beta1 tails. Single amino acid substitutions of Ile-719 and Glu-749 in the beta3 membrane-proximal and -distal regions, respectively, with the corresponding beta1 residues or alanine rendered alphaIIbbeta3 constitutively active. The I719M/E749S double mutant had the same ligand binding activity as alpha IIb beta3/beta1. These beta3 mutations also induced alphaVbeta3 activation. Conversely, substitution of Met-719 or Ser-749 in the beta1 tail with the corresponding beta3 tail residue (M719I or S749E) inhibited alpha IIb beta3/beta1 activation, and the M719I/S749E double mutant inhibited ligand binding to a level comparable with that of the wild-type alpha IIb beta3. Knock down of talin by short hairpin RNA inhibited the I719M- and E749S-induced alpha IIb beta3 activation. These results suggest that the beta3 membrane-proximal and -distal residues cooperatively regulate talin-mediated alpha IIb beta3 activation.  相似文献   

8.
The beta subunit cytoplasmic domains of integrin adhesion receptors are necessary for the connection of these receptors to the actin cytoskeleton. The cytoplasmic protein, talin, binds to beta integrin cytoplasmic tails and actin filaments, hence forming an integrin-cytoskeletal linkage. We used recombinant structural mimics of beta(1)A, beta(1)D and beta(3) integrin cytoplasmic tails to characterize integrin-binding sites within talin. Here we report that an integrin-binding site is localized within the N-terminal talin head domain. The binding of the talin head domain to integrin beta tails is specific in that it is abrogated by a single point mutation that disrupts integrin localization to talin-rich focal adhesions. Integrin-cytoskeletal interactions regulate integrin affinity for ligands (activation). Overexpression of a fragment of talin containing the head domain led to activation of integrin alpha(IIb)beta(3); activation was dependent on the presence of both the talin head domain and the integrin beta(3) cytoplasmic tail. The head domain of talin thus binds to integrins to form a link to the actin cytoskeleton and can thus regulate integrin function.  相似文献   

9.
The binding of fibronectin (Fn) to several integrins involves the Arg-Gly-Asp (RGD) tripeptide sequence. However, linear synthetic RGD peptides do not completely mimic the cell attachment activity of intact Fn or certain large Fn fragments. This suggests that the integrin-Fn interaction involves a more extended surface of Fn than that provided by the RGD sequence. To test this possibility, three novel monoclonal anti-Fn antibodies that inhibit its binding to a purified integrin, alpha IIb beta 3, were developed. The epitopes of these three antibodies mapped to a region at least 55 residues amino-terminal of the RGD sequence. Further, recombinant fragments of Fn containing these epitopes and lacking the RGD site also inhibited the binding of Fn to purified alpha IIb beta 3. These fragments, which spanned Fn residues 1359-1436, bound to alpha IIb beta 3 in a divalent cation-dependent manner. In addition, this region of Fn bound specifically to alpha IIb beta 3 on thrombin-stimulated but not resting platelets. These results demonstrate the presence of additional sequences in Fn that interact with integrin alpha IIb beta 3 and suggest that multiple sites in Fn are involved in its recognition by this integrin.  相似文献   

10.
Talin is a large cytoskeletal protein (2541 amino acid residues) which plays a key role in integrin-mediated events that are crucial for cell adhesion, migration, proliferation and survival. This review summarises recent work on the structure of talin and on some of the structurally better defined interactions with other proteins. The N-terminal talin head (approx. 50 kDa) consists of an atypical FERM domain linked to a long flexible rod (approx. 220 kDa) made up of a series of amphipathic helical bundle domains. The F3 FERM subdomain in the head binds the cytoplasmic tail of integrins, but this interaction can be inhibited by an interaction of F3 with a helical bundle in the talin rod, the so-called “autoinhibited form” of the molecule. The talin rod contains a second integrin-binding site, at least two actin-binding sites and a large number of binding sites for vinculin, which is important in reinforcing the initial integrin–actin link mediated by talin. The vinculin binding sites are defined by hydrophobic residues buried within helical bundles, and these must unfold to allow vinculin binding. Recent experiments suggest that this unfolding may be mediated by mechanical force exerted on the talin molecule by actomyosin contraction.  相似文献   

11.
Xing B  Thuppal S  Jedsadayanmata A  Du X  Lam SC 《FEBS letters》2006,580(8):2027-2032
Talin mediates integrin signaling by binding to integrin cytoplasmic tails through its FERM domain which consists of F1, F2 and F3 subdomains. TA205, an anti-talin monoclonal antibody, disrupts actin stress fibers and focal adhesion when microinjected into fibroblasts. Here, we showed that TA205 caused an allosteric inhibition of integrin alphaIIb beta3 binding to the talin FERM domain and mapped the TA205 epitope to residues 131-150 in talin F1. Furthermore, binding of a talin rod fragment to talin head was partially inhibited by TA205. These findings suggest that talin F1 may be important in regulation of integrin binding and talin head-rod interaction.  相似文献   

12.
Talin links integrin beta cytoplasmic domains to the actin cytoskeleton and is involved in the clustering and activation of these receptors. To understand how talin recognizes integrin beta cytoplasmic domains, we configured surface plasmon resonance methodology to measure the interaction of talin with the beta3 integrin cytoplasmic domain. Here we report that the N-terminal approximately 47-kDa talin head domain (talin-H) has a 6-fold higher binding affinity than intact talin for the beta3 tail. The affinity difference is mainly due to a difference in k(on). Calpain cleavage of intact talin released talin-H and resulted in a 16-fold increase in apparent K(a) and a 100-fold increase in apparent k(on). The increase in talin binding after cleavage was greater than predicted for stoichiometric liberation of free talin-H. This additional increase in binding was due to cooperative binding of talin-H and talin rod domain to the beta3 tail. Talin resembles ERM (ezrin, radixin, moesin) proteins in possessing an N-terminal FERM (band four-point-one, ezrin, radixin, moesin) domain. These data show that the talin FERM domain, like that in the ERM proteins, is masked in the intact molecule. Furthermore, they suggest that talin cleavage by calpain may contribute to the effects of the protease on the clustering and activation of integrins.  相似文献   

13.
Integrin activation is essential for dynamically linking the extracellular environment and cytoskeletal/signaling networks. Activation is controlled by integrins' short cytoplasmic tails (CTs). It is widely accepted that the head domain of talin (talin-H) can mediate integrin activation by binding to two sites in integrin beta's CT; in integrin beta(3) this is an NPLY(747) motif and the membrane-proximal region. Here, we show that the C-terminal region of integrin beta(3) CT, composed of a conserved TS(752)T region and NITY(759) motif, supports integrin activation by binding to a cytosolic binding partner, kindlin-2, a widely distributed PTB domain protein. Co-transfection of kindlin-2 with talin-H results in a synergistic enhancement of integrin alpha(IIb)beta(3) activation. Furthermore, siRNA knockdown of endogenous kindlin-2 impairs talin-induced alpha(IIb)beta(3) activation in transfected CHO cells and blunts alpha(v)beta(3)-mediated adhesion and migration of endothelial cells. Our results thus identify kindlin-2 as a novel regulator of integrin activation; it functions as a coactivator.  相似文献   

14.
Adhesive interactions of platelet integrin alpha(IIb)beta3 with fibrinogen and fibrin are central events in hemostasis and thrombosis. However, the mechanisms by which alpha(IIb)beta3 binds these ligands remain incompletely understood. We have recently demonstrated that alpha(IIb)beta3 binds the gamma365-383 sequence in the gammaC-domain of fibrin(ogen). This sequence contains neither the AGDV nor the RGD recognition motifs, known to bind alpha(IIb)beta3, suggesting the different specificity of the integrin. Here, using peptide arrays, mutant fibrinogens, and recombinant mutant gammaC-domains, we have examined the mechanism whereby alpha(IIb)beta3 binds gamma365-383. The alpha(IIb)beta3-binding activity was localized within gamma370-381, with two short sequences, gamma370ATWKTR375 and gamma376WYSMKK381, being able to independently bind the integrin. Furthermore, recognition of alpha(IIb)beta3 by gamma370-381 depended on four basic residues, Lys373, Arg375, Lys380, and Lys381. Simultaneous replacement of these amino acids and deletion of the gamma408AGDV411 sequence in the recombinant gammaC-domain resulted in the loss of alpha(IIb)beta3-mediated platelet adhesion. Confirming the critical roles of the identified residues, abnormal fibrinogen Kaiserslautern, in which gammaLys380 is replaced by Asn, demonstrated delayed clot retraction and impaired alpha(IIb)beta3 binding. Also, a mutant recombinant fibrinogen modeled after the naturally occurring variant Osaka V (gammaArg375 --> Gly) showed delayed clot retraction and reduced binding to purified alpha(IIb)beta3. These results identify the gamma370-381 sequence of fibrin(ogen) as the binding site for alpha(IIb)beta3 involved in platelet adhesion and clot retraction and define the new recognition specificity of this integrin.  相似文献   

15.
We have investigated receptor function and epitope expression of recombinant alpha(IIb)beta(3) mutated at Cys(177) or Cys(273) in the I-like domain as well as Cys(598), located in the fourth repeat of the membrane-proximal cysteine-rich region and mutated in a Glanzmann's thrombasthenia type II patient. The beta(3) mutants beta(3)C177A, beta(3)C273A, and beta(3)C598Y exhibited a decreased electrophoretic mobility in SDS-polyacrylamide gel electrophoresis under nonreducing conditions, confirming the disruption of the respective disulfide loops. Despite reduced surface expression, the alpha(IIb)beta(3)C177A, alpha(IIb)beta(3)C273A, and alpha(IIb)beta(3)C598Y receptors mediated cell adhesion to immobilized fibrinogen and translocated into focal adhesion plaques. The beta(3)C598Y mutation, but not the beta(3)C177A or beta(3)C273A mutations, induced spontaneous binding of the ligand mimetic monoclonal antibody PAC-1, while the beta(3)C177A and beta(3)C273A mutants exhibited reduced complex stability in the absence of Ca(2+). Epitope mapping of function-blocking monoclonal antibodies (mAbs) allowed the identification of two distinct subgroups; mAbs A2A9, pl2-46, 10E5, and P256 did not interact with alpha(IIb)beta(3)C273A and bound only weakly to alpha(IIb)beta(3)C177A, while mAbs AP2, LM609 and 7E3 bound normally to mutant alpha(IIb)beta(3)C273A, but interacted only weakly with mutant alpha(IIb)beta(3)C177A. Furthermore, a cryptic epitope recognized by mAb 4D10G3 and not exposed on wild type alpha(IIb)beta(3) became accessible only on mutant alpha(IIb)beta(3)C177A and was mapped to the 60-kDa chymotrypsin fragment of beta(3). Finally, the ligand-induced binding site (LIBS) epitopes AP5, D3, LIBS1, and LIBS2 were spontaneously expressed on all three mutants independent of RGDS or dithiothreitol treatment. Our results provide evidence that disruption of a single cysteine disulfide bond in the cysteine-rich repeat domain, but not in the I-like domain, activates integrin alpha(IIb)beta(3). In contrast, disruption of each of the disulfide bonds in the two long insertions of the I-like domain predicted to be in close contact with the alpha subunit beta-propeller domain affect the stability of the alpha(IIb)beta(3) heterodimer and inhibit complex-specific mAb binding without affecting the RGD binding capacity of the metal ion-dependent adhesion site-like domain.  相似文献   

16.
The cytoskeletal, actin-binding protein talin has been previously implicated in phagocytosis in Dictyostelium discoideum and mammalian phagocytes. However, its mechanism of action during internalization is not understood. Our data confirm that endogenous talin can occasionally be found at phagosomes forming around IgG- and C3bi-opsonized red blood cells in macrophages. Remarkably, talin knockdown specifically abrogates uptake through complement receptor 3 (CR3, CD11b/CD18, alpha(M)beta(2) integrin) and not through the Fc gamma receptor. We show that talin physically interacts with CR3/alpha(M)beta(2) and that this interaction involves the talin head domain and residues W747 and F754 in the beta(2) integrin cytoplasmic domain. The CR3/alpha(M)beta(2)-talin head interaction controls not only talin recruitment to forming phagosomes but also CR3/alpha(M)beta(2) binding activity, both in macrophages and transfected fibroblasts. However, the talin head domain alone cannot support phagocytosis. Our results establish for the first time at least two distinct roles for talin during CR3/alpha(M)beta(2)-mediated phagocytosis, most noticeably activation of the CR3/alpha(M)beta(2) receptor and phagocytic uptake.  相似文献   

17.
I examined the binding kinetics between integrin (alpha(IIb)beta(3)) and purified focal adhesion proteins, including alpha-actinin, filamin, vinculin, talin, and F-actin. Using static light-scatter technique, I observed affinities of the order talin > filamin > F-actin > alpha-actinin > (talin when bound to vinculin) which were lower when integrin was complexed with fibronectin. No binding between integrin and vinculin was detected. The calculated dissociation constants (K(d)) ranged between 0.4 microM and 5 microM. These results in part confirm previously published data using different methods. The modest affinity with which the focal adhesion proteins interact in vitro might be indicative of how cells, e.g., thrombocytes, gain a high degree of versatility and velocity.  相似文献   

18.
We have mapped the vinculin-binding sites in the cytoskeletal protein talin as well as those sequences which target the talin molecule to focal contacts. Using a series of overlapping talin-fusion proteins expressed in E. coli and 125I-vinculin in both gel-overlay and microtitre well binding assays, we present evidence for three separable binding sites for vinculin. All three are in the tail segment of talin (residues 434-2541) and are recognized by the same fragment of vinculin (residues 1-258). Two sites are adjacent to each other and span residues 498-950, and the third site is more than 700 residues distant in the primary sequence. Scatchard analysis of 125I-vinculin binding to talin also indicates three sites, each with a similar affinity (Kd = 2- 6 x 10(-7) M). We also detect a substoichiometric interaction of higher affinity (Kd = 3 x 10(-8) M) which remains unexplained. By expressing regions of the chicken talin molecule in heterologous cells, we have shown that the sequences required to target talin to focal contacts overlap those which bind vinculin.  相似文献   

19.
Hemostasis and thrombosis (blood clotting) involve fibrinogen binding to integrin alpha(IIb)beta(3) on platelets, resulting in platelet aggregation. alpha(v)beta(3) binds fibrinogen via an Arg-Asp-Gly (RGD) motif in fibrinogen's alpha subunit. alpha(IIb)beta(3) also binds to fibrinogen; however, it does so via an unstructured RGD-lacking C-terminal region of the gamma subunit (gammaC peptide). These distinct modes of fibrinogen binding enable alpha(IIb)beta(3) and alpha(v)beta(3) to function cooperatively in hemostasis. In this study, crystal structures reveal the integrin alpha(IIb)beta(3)-gammaC peptide interface, and, for comparison, integrin alpha(IIb)beta(3) bound to a lamprey gammaC primordial RGD motif. Compared with RGD, the GAKQAGDV motif in gammaC adopts a different backbone configuration and binds over a more extended region. The integrin metal ion-dependent adhesion site (MIDAS) Mg(2+) ion binds the gammaC Asp side chain. The adjacent to MIDAS (ADMIDAS) Ca(2+) ion binds the gammaC C terminus, revealing a contribution for ADMIDAS in ligand binding. Structural data from this natively disordered gammaC peptide enhances our understanding of the involvement of gammaC peptide and integrin alpha(IIb)beta(3) in hemostasis and thrombosis.  相似文献   

20.
Goksoy E  Ma YQ  Wang X  Kong X  Perera D  Plow EF  Qin J 《Molecular cell》2008,31(1):124-133
Activation of heterodimeric (alpha/beta) integrin transmembrane receptors by the 270 kDa cytoskeletal protein talin is essential for many important cell adhesive and physiological responses. A key step in this process involves interaction of phosphotyrosine-binding (PTB) domain in the N-terminal head of talin (talin-H) with integrin beta membrane-proximal cytoplasmic tails (beta-MP-CTs). Compared to talin-H, intact talin exhibits low potency in inducing integrin activation. Using NMR spectroscopy, we show that the large C-terminal rod domain of talin (talin-R) interacts with talin-H and allosterically restrains talin in a closed conformation. We further demonstrate that talin-R specifically masks a region in talin-PTB where integrin beta-MP-CT binds and competes with it for binding to talin-PTB. The inhibitory interaction is disrupted by a constitutively activating mutation (M319A) or by phosphatidylinositol 4,5-bisphosphate, a known talin activator. These data define a distinct autoinhibition mechanism for talin and suggest how it controls integrin activation and cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号