首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The condensin complex and topoisomerase II (topo II) have different biochemical activities in vitro, and both are required for mitotic chromosome condensation. We have used Xenopus egg extracts to investigate the functional interplay between condensin and topo II in chromosome condensation. When unreplicated chromatin is directly converted into chromosomes with single chromatids, the two proteins must function together, although they are independently targeted to chromosomes. In contrast, the requirement for topo II is temporarily separable from that of condensin when chromosome assembly is induced after DNA replication. This experimental setting allows us to find that, in the absence of condensin, topo II becomes enriched in an axial structure within uncondensed chromatin. Subsequent addition of condensin converts this structure into mitotic chromosomes in an ATP hydrolysis-dependent manner. Strikingly, preventing DNA replication by the addition of geminin or aphidicolin disturbs the formation of topo II-containing axes and alters the binding property of topo II with chromatin. Our results suggest that topo II plays an important role in an early stage of chromosome condensation, and that this function of topo II is tightly coupled with prior DNA replication.  相似文献   

2.
The origin-recognition complex (ORC) has an essential role in defining DNA replication origins and in chromosome segregation. Recent studies in Drosophila orc2 mutants, and in human cells depleted of ORC2, have suggested that this factor is also implicated in mitotic chromosome assembly. We asked whether ORC was required for M phase chromosome assembly independently of its function in DNA replication. We performed depletion assays and reconstitution experiments in Xenopus egg extracts, in conditions of M phase chromosome assembly coupled or uncoupled from DNA replication. We show that, although ORC is dispensable for mitotic chromosome condensation, it is necessary at the interphase-mitosis transition for proper mitotic chromosome assembly to occur in a reaction not strictly dependent on DNA replication. This function involves the recruitment to chromatin of cdc2 kinase and the chromatin disassembly of interphasic replication protein A (RPA) foci. Furthermore, we show that mutations of RPA at the cdc2 kinase site prevents RPA dissociation from chromatin and impairs mitotic chromosome assembly without affecting DNA replication. Our results support the conclusion that in addition to its role in the assembly of prereplication complexes (pre-RCs), at the G1-S transition, ORC is also required for their disassembly at mitotic entry.  相似文献   

3.
4.
Defects in DNA replication and chromosome condensation are common phenotypes in cancer cells. A link between replication and condensation has been established, but little is known about the role of checkpoints in monitoring chromosome condensation. We investigate this function by live analysis, using the rapid division cycles in the early Drosophila embryo. We find that S-phase and topoisomerase inhibitors delay both the initiation and the rate of chromosome condensation. These cell cycle delays are mediated by the cell cycle kinases chk1 and wee1. Inhibitors that cause severe defects in chromosome condensation and congression on the metaphase plate result in delayed anaphase entry. These delays are mediated by wee1 and are not the result of spindle assembly checkpoint activation. In addition, we provide the first detailed live analysis of the direct effect of widely used anticancer agents (aclarubicin, ICRF-193, VM26, doxorubicin, camptothecin, aphidicolin, hydroxyurea, cisplatin, mechlorethamine and x-rays) on key nuclear and cytoplasmic cell cycle events.  相似文献   

5.
The ability to visualise specific genes and proteins within bacterial cells is revolutionising knowledge of chromosome segregation. The essential elements appear to be the driving force behind DNA replication, which occurs at fixed cellular positions, the condensation of newly replicated DNA by a chromosome condensation machine located at the cell 1/4 and 3/4 positions, and molecular machines that act at midcell to allow chromosome separation after replication and movement of the sister chromosomes away from the division septum prior to cell division. This review attempts to provide a perspective on current views of the bacterial chromosome segregation mechanism and how it relates to other cellular processes.  相似文献   

6.
Gotoh E 《Chromosoma》2007,116(5):453-462
A basic question of cell biology is how DNA folds to chromosome. Numbers of examples have suggested the involvement of DNA replication in chromosome structure formation. To visualize and identify the dynamics of chromosome structure formation and to elucidate the involvement of DNA replication in chromosome construction, Cy3-2′-deoxyuridine-5′-triphosphate direct-labeled active replicating DNA was observed in prematurely condensed chromosomes (PCCs) under a confocal scanning microscope utilized with drug-induced premature chromosome condensation (PCC) technique that facilitates the visualization of interphase chromatin as condensed chromosome form. S-phase PCCs revealed clearly the drastic dynamics of chromosome formation that transits during S-phase from a ‘cloudy nebula’ to numerous numbers of ‘beads on a string’ and finally to ‘striped arrays of banding structured chromosome’ along with the progress of DNA replication. The number, distribution, and shape of replication foci were also measured in individual subphases of S-phase more precisely than reported previously; maximally, ∼1,400 foci of 0.35 μm average radius size were scored at the beginning of the S-phase, and the number reduced to ∼100 at the end of the S-phase. Drug-induced PCC clearly provided the new insight that eukaryote DNA replication is tightly coupled with the chromosome condensation/compaction for the construction of the higher-ordered structure of the eukaryote chromosome.  相似文献   

7.
Mitotic chromosome condensation is normally dependent on the previous completion of replication. Caffeine spectacularly deranges cell cycle controls after DNA polymerase inhibition or DNA damage; it induces the condensation, in cells that have not completed replication, of fragmented nuclear structures, analogous to the S-phase prematurely condensed chromosomes seen when replicating cells are fused with mitotic cells. Caffeine has been reported to induce S-phase condensation in cells where replication is arrested, by accelerating cell cycle progression as well as by uncoupling it from replication; for, in BHK or CHO hamster cells arrested in early S-phase and given caffeine, condensed chromosomes appear well before the normal time at which mitosis occurs in cells released from arrest. However, we have found that this apparent acceleration depends on the technique of synchrony and cell line employed. In other cells, and in synchronized hamster cells where the cycle has not been subjected to prolonged continual arrest, condensation in replication-arrested cells given caffeine occurs at the same time as normal mitosis in parallel populations where replication is allowed to proceed. This caffeine-induced condensation is therefore "premature" with respect to the chromatin structure of the S-phase nucleus, but not with respect to the timing of the normal cycle. Caffeine in replication-arrested cells thus overcomes the restriction on the formation of mitotic condensing factors that is normally imposed during DNA replication, but does not accelerate the timing of condensation unless cycle controls have previously been disturbed by synchronization procedures.  相似文献   

8.
Common fragile sites: mechanisms of instability revisited   总被引:4,自引:0,他引:4  
Common fragile sites (CFSs) are large chromosomal regions prone to breakage upon replication stress that are considered a driving force of oncogenesis. CFSs were long believed to contain sequences blocking fork progression, thus impeding replication completion and leading to DNA breaks upon chromosome condensation. However, recent studies show that delayed completion of DNA replication instead depends on a regional paucity in initiation events. Because the distribution and the timing of these events are cell type dependent, different chromosomal regions can be committed to fragility in different cell types. These new data reveal the epigenetic nature of CFSs and open the way to a reevaluation of the role played by these sites in the formation of chromosome rearrangements found in tumors from different tissues.  相似文献   

9.
Mammalian chromosome replication was studied by the aid of premature chromosome condensation (PCC). After induction of PCC the sites of DNA replication appear as “gaps” between condensed chromosomal regions. These condensed particles are unineme before and bineme after DNA replication. The two phases are due mainly to the unineme or bineme nature of the particles. During early S-phase almost all particles are unineme, during late S-phase they are bineme and there is only one transitory stage between these two main stages. Premature chromosome condensation was studied in detail on a specific human chromosome 22 which is marked by its heterochromatin constitution. This led to easy identification of these elements in S-phase PCC (S-PCC) preparations. For each stage of the S-phase there was a reproducible pattern of condensed chromosomal particles making up the whole chromosome. The number of these particles was rather limited and a complementary pattern was found in early versus late S-phase. The pattern of early S-PCC corresponded to the banding pattern of G-banded prometaphase chromosomes; the pattern of late S-PCC, to R-banded prometaphase chromosomes. Thus, “gaps” and condensed particles as observed after PCC induction are obviously homologous to chromosome replication units. Replication of constitutive heterochromatin occurred during the very late S-phase. During this stage PCC induction led to condensation of the heterochromatin into several small, highly fluorescent particles.  相似文献   

10.
The eukaryotic cell replicates its chromosomal DNA with almost absolute fidelity in the course of every cell cycle. This accomplishment is remarkable considering that the conditions for DNA replication are rarely ideal. The replication machinery encounters a variety of obstacles on the chromosome, including damaged template DNA. In addition, a number of chromosome regions are considered to be difficult to replicate owing to DNA secondary structures and DNA binding proteins required for various transactions on the chromosome. Under these conditions, replication forks stall or break, posing grave threats to genomic integrity. How does the cell combat such stressful conditions during DNA replication? The replication fork protection complex (FPC) may help answer this question. Recent studies have demonstrated that the FPC is required for the smooth passage of replication forks at difficult-to-replicate genomic regions and plays a critical role in coordinating multiple genome maintenance processes at the replication fork.  相似文献   

11.
In both eukaryotes and prokaryotes, chromosomal DNA undergoes replication, condensation–decondensation and segregation, sequentially, in some fixed order. Other conditions, like sister‐chromatid cohesion (SCC), may span several chromosomal events. One set of these chromosomal transactions within a single cell cycle constitutes the ‘chromosome cycle’. For many years it was generally assumed that the prokaryotic chromosome cycle follows major phases of the eukaryotic one: –replication–condensation–segregation–(cell division)–decondensation–, with SCC of unspecified length. Eventually it became evident that, in contrast to the strictly consecutive chromosome cycle of eukaryotes, all stages of the prokaryotic chromosome cycle run concurrently. Thus, prokaryotes practice ‘progressive’ chromosome segregation separated from replication by a brief SCC, and all three transactions move along the chromosome at the same fast rate. In other words, in addition to replication forks, there are ‘segregation forks’ in prokaryotic chromosomes. Moreover, the bulk of prokaryotic DNA outside the replication–segregation transition stays compacted. I consider possible origins of this concurrent replication–segregation and outline the ‘nucleoid administration’ system that organizes the dynamic part of the prokaryotic chromosome cycle.  相似文献   

12.
Two alleles of the Drosophila melanogaster Rfc4 (DmRfc4) gene, which encodes subunit 4 of the replication factor C (RFC) complex, cause striking defects in mitotic chromosome cohesion and condensation. These mutations produce larval phenotypes consistent with a role in DNA replication but also result in mitotic chromosomal defects appearing either as premature chromosome condensation-like or precocious sister chromatid separation figures. Though the DmRFC4 protein localizes to all replicating nuclei, it is dispersed from chromatin in mitosis. Thus the mitotic defects appear not to be the result of a direct role for RFC4 in chromosome structure. We also show that the mitotic defects in these two DmRfc4 alleles are the result of aberrant checkpoint control in response to DNA replication inhibition or damage to chromosomes. Not all surveillance function is compromised in these mutants, as the kinetochore attachment checkpoint is operative. Intriguingly, metaphase delay is frequently observed with the more severe of the two alleles, indicating that subsequent chromosome segregation may be inhibited. This is the first demonstration that subunit 4 of RFC functions in checkpoint control in any organism, and our findings additionally emphasize the conserved nature of RFC's involvement in checkpoint control in multicellular eukaryotes.  相似文献   

13.
The eukaryotic cell replicates its chromosomal DNA with almost absolute fidelity in the course of every cell cycle. This accomplishment is remarkable considering that the conditions for DNA replication are rarely ideal. The replication machinery encounters a variety of obstacles on the chromosome, including damaged template DNA. In addition, a number of chromosome regions are considered to be difficult to replicate owing to DNA secondary structures and DNA binding proteins required for various transactions on the chromosome. Under these conditions, replication forks stall or break, posing grave threats to genomic integrity. How does the cell combat such stressful conditions during DNA replication? The replication fork protection complex (FPC) may help answer this question. Recent studies have demonstrated that the FPC is required for the smooth passage of replication forks at difficult-to-replicate genomic regions and plays a critical role in coordinating multiple genome maintenance processes at the replication fork.  相似文献   

14.
Holway AH  Hung C  Michael WM 《Genetics》2005,169(3):1451-1460
The Mus101 family of chromosomal proteins, identified initially in Drosophila, is widely conserved and has been shown to function in a variety of DNA metabolic processes. Such functions include DNA replication, DNA damage repair, postreplication repair, damage checkpoint activation, chromosome stability, and chromosome condensation. Despite its conservation and widespread involvement in chromosome biogenesis, very little is known about how Mus101 is regulated and what other proteins are required for Mus101 to exert its functions. To learn more about Mus101, we have initiated an analysis of the protein in C. elegans. Here, we show that C. elegans mus-101 is an essential gene, that it is required for DNA replication, and that it also plays an important role in the DNA damage response. Furthermore, we use RNA interference (RNAi)-mediated reverse genetics to screen for genes that modify a mus-101 partial loss-of-function RNAi phenotype. Using a systematic approach toward modifier gene discovery, we have found five chromosome I genes that modify the mus-101 RNAi phenotype, and we go on to show that one of them encodes an E3 SUMO ligase that promotes SUMO modification of MUS-101 in vitro. These results expand our understanding of MUS-101 regulation and show that genetic interactions can be uncovered using screening strategies that rely solely on RNAi.  相似文献   

15.
In this report, we have investigated cell division after inhibition of initiation of chromosome replication in Escherichia coli. In a culture grown to the stationary phase, cells containing more than one chromosome were able to divide some time after restart of growth, under conditions not allowing initiation of chromosome replication. This shows that there is no requirement for cell division to take place within a certain time after initiation of chromosome replication. Continued growth without initiation of replication resulted in filamented cells that generally did not have any constrictions. Interestingly, FtsZ rings were formed in a majority of these cells as they reached a certain cell length. These rings appeared and were maintained for some time at the cell quarter positions on both sides of the centrally localized nucleoid. These results confirm previous findings that cell division sites are formed independently of chromosome replication and indicate that FtsZ ring assembly is dependent on cell size rather than on the capacity of the cell to divide. Disruption of the mukB gene caused a significant increase in the region occupied by DNA after the replication runout, consistent with a role of MukB in chromosome condensation. The aberrant nucleoid structure was accompanied by a shift in FtsZ ring positioning, indicating an effect of the nucleoid on the positioning of the FtsZ ring. A narrow cell length interval was found, under and over which primarily central and non-central FtsZ rings, respectively, were observed. This finding correlates well with the previously observed oscillatory movement of MinC and MinD in short and long cells.  相似文献   

16.
BACKGROUND: The accurate duplication and packaging of the genome is an absolute prerequisite to the segregation of chromosomes in mitosis. To understand the process of cell-cycle chromosome dynamics further, we have performed the first detailed characterization of a mutation affecting mitotic chromosome condensation in a metazoan. Our combined genetic and cytological approaches in Drosophila complement and extend existing work employing yeast genetics and Xenopus in vitro extract systems to characterize higher-order chromosome structure and function. RESULTS: Two alleles of the ORC2 gene were found to cause death late in larval development, with defects in cell-cycle progression (delays in S-phase entry and metaphase exit) and chromosome condensation in mitosis. During S-phase progression in wild-type cells, euchromatin replicates early and heterochromatin replicates late. Both alleles disrupted the normal pattern of chromosomal replication, with some euchromatic regions replicating even later than heterochromatin. Mitotic chromosomes were irregularly condensed, with the abnormally late replicating regions of euchromatin exhibiting the greatest problems in mitotic condensation. CONCLUSIONS: The results not only reveal novel functions for ORC2 in chromosome architecture in metazoans, they also suggest that the correct timing of DNA replication may be essential for the assembly of chromatin that is fully competent to undergo mitotic condensation.  相似文献   

17.
《The Journal of cell biology》1996,135(5):1207-1218
Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase- arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure.  相似文献   

18.
Previous studies of Epstein-Barr virus (EBV) replication focused mainly on the viral and cellular factors involved in replication compartment assembly and controlling the cell cycle. However, little is known about how EBV reorganizes nuclear architecture and the chromatin territories. In EBV-positive nasopharyngeal carcinoma NA cells or Akata cells, we noticed that cellular chromatin becomes highly condensed upon EBV reactivation. In searching for the possible mechanisms involved, we found that transient expression of EBV BGLF4 kinase induces unscheduled chromosome condensation, nuclear lamina disassembly, and stress fiber rearrangements, independently of cellular DNA replication and Cdc2 activity. BGLF4 interacts with condensin complexes, the major components in mitotic chromosome assembly, and induces condensin phosphorylation at Cdc2 consensus motifs. BGLF4 also stimulates the decatenation activity of topoisomerase II, suggesting that it may induce chromosome condensation through condensin and topoisomerase II activation. The ability to induce chromosome condensation is conserved in another gammaherpesvirus kinase, murine herpesvirus 68 ORF36. Together, these findings suggest a novel mechanism by which gammaherpesvirus kinases may induce multiple premature mitotic events to provide more extrachromosomal space for viral DNA replication and successful egress of nucleocapsid from the nucleus.  相似文献   

19.
The disruption of DNA replication in cells triggers checkpoint responses that slow-down S-phase progression and protect replication fork integrity. These checkpoints are also determinants of cell fate and can help maintain cell viability or trigger cell death pathways. CHK1 has a pivotal role in such S-phase responses. It helps maintain fork integrity during replication stress and protects cells from several catastrophic fates including premature mitosis, premature chromosome condensation and apoptosis. Here we investigated the role of CHK1 in protecting cancer cells from premature mitosis and apoptosis. We show that premature mitosis (characterized by the induction of histone H3 phosphorylation, aberrant chromatin condensation, and persistent RPA foci in arrested S-phase cells) is induced in p53-deficient tumour cells depleted of CHK1 when DNA synthesis is disrupted. These events are accompanied by an activation of Aurora kinase B in S-phase cells that is essential for histone H3 Ser10 phosphorylation. Histone H3 phosphorylation precedes the induction of apoptosis in p53−/− tumour cell lines but does not appear to be required for this fate as an Aurora kinase inhibitor suppresses phosphorylation of both Aurora B and histone H3 but has little effect on cell death. In contrast, only a small fraction of p53+/+ tumour cells shows this premature mitotic response, although they undergo a more rapid and robust apoptotic response. Taken together, our results suggest a novel role for CHK1 in the control of Aurora B activation during DNA replication stress and support the idea that premature mitosis is a distinct cell fate triggered by the disruption of DNA replication when CHK1 function is suppressed.  相似文献   

20.
Control of eukaryotic DNA replication at the chromosomal level.   总被引:1,自引:0,他引:1  
A hypothesis for the control of eukaryotic DNA replication at the chromosomal level is proposed. The specific regulatory problem arises from the subdivision of the genome into thousands of individually replicating units, each of which must be duplicated a single time during S-phase. The hypothesis is based on the finding of direct repeats at replication origins. Such repeats can adopt, beyond the full-length double helical structure, another configuration exposing two single-stranded loops that provide suitable templates for the initiation of DNA replication. Any further initiation at the same origin is excluded as the single strandedness is eliminated by the replication process. Restoration of the initiable loop structure is proposed to occur by DNA-protein rearrangements involved in chromosome condensation and duplication of the chromosomal protein backbone during mitosis. A possible role of the maturation promoting factor (MPF) is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号