首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prion diseases are fatal, transmissible neurodegenerative diseases of the central nervous system. An abnormally protease-resistant and insoluble form (PrP(Sc)) of the normally soluble protease-sensitive host prion protein (PrP(C)) is the major component of the infectious prion. During the course of prion disease, PrP(Sc) accumulates primarily in the lymphoreticular and central nervous systems. Recent studies have shown that co-infection of prion-infected fibroblast cells with the Moloney murine leukemia virus (Mo-MuLV) strongly enhanced the release and spread of scrapie infectivity in cell culture, suggesting that retroviral coinfection might significantly influence prion spread and disease incubation times in vivo. We now show that another retrovirus, the murine leukemia virus Friend (F-MuLV), also enhanced the release and spread of scrapie infectivity in cell culture. However, peripheral co-infection of mice with both Friend virus and the mouse scrapie strain 22L did not alter scrapie disease incubation times, the levels of PrP(Sc) in the brain or spleen, or the distribution of pathological lesions in the brain. Thus, retroviral co-infection does not necessarily alter prion disease pathogenesis in vivo, most likely because of different cell-specific sites of replication for scrapie and F-MuLV.  相似文献   

2.
The prion agent is the infectious particle causing spongiform encephalopathies in animals and humans and is thought to consist of an altered conformation (PrP(Sc)) of the normal and ubiquitous prion protein PrP(C). The interaction of the prion agent with the immune system, particularly the humoral immune response, has remained unresolved. Here we investigated the immunogenicity of full-length native and infectious prions, as well as the specific biological effects of the resulting monoclonal antibodies (MAbs) on the binding and clearance of prions in cell culture and in in vivo therapy. Immunization of prion knockout (Prnp(0/0)) mice with phosphotungstic acid-purified mouse prions resulted in PrP-specific monoclonal antibodies with binding specificities selective for PrP(Sc) or for both PrP(C) and PrP(Sc). PrP(Sc)-specific MAb W261, of the IgG1 isotype, reacted with prions from mice, sheep with scrapie, deer with chronic wasting disease (CWD), and humans with sporadic and variant Creutzfeldt-Jakob disease (CJD) in assays including a capture enzyme-linked immunosorbent assay (ELISA) system. This PrP(Sc)-specific antibody was unable to clear prions from mouse neuroblastoma cells (ScN2a) permanently infected with scrapie, whereas the high-affinity MAb W226, recognizing both isoforms, PrP(Sc) and PrP(C), did clear prions from ScN2a cells, as determined by a bioassay. However, an attempt to treat intraperitoneally prion infected mice with full-length W226 or with a recombinant variable-chain fragment (scFv) from W226 could only slightly delay the incubation time. We conclude that (i) native, full-length PrP(Sc) elicits a prion-specific antibody response in PrP knockout mice, (ii) a PrP(Sc)-specific antibody had no prion-clearing effect, and (iii) even a high-affinity MAb that clears prions in vitro (W226) may not necessarily protect against prion infection, contrary to previous reports using different antibodies.  相似文献   

3.
The causative agent of prion diseases is the pathological isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc has an identical amino acid sequence to PrPC; thus, it has been assumed that an immune response against PrPSc could not be found in prion-affected animals. In this study, we found the anti-prion protein (PrP) antibody at the terminal stage of mouse scrapie. Several sera from mice in the terminal stage of scrapie reacted to the recombinant mouse PrP (rMPrP) molecules and brain homogenates of mouse prion diseases. These results indicate that mouse could recognize PrPC or PrPSc as antigens by the host immune system. Furthermore, immunization with rMPrP generates high titers of anti-PrP antibodies in wild-type mice. Some anti-PrP antibodies immunized with rMPrP prevent PrPSc replication in vitro. The mouse sera from terminal prion disease have several wide epitopes, although mouse sera immunized with rMPrP possess narrow epitopes.  相似文献   

4.
Prion diseases such as scrapie involve the accumulation of disease-specific prion protein, PrP(Sc), in the brain. Toll-like receptors (TLRs) are a family of proteins that recognize microbial constituents and are central players in host innate immune responses. The TLR9 agonist unmethylated CpG DNA was shown to prolong the scrapie incubation period in mice, suggesting that innate immune activation interferes with prion disease progression. Thus, it was predicted that ablation of TLR signaling would result in accelerated pathogenesis. C3H/HeJ (Tlr4(Lps-d)) mice, which possess a mutation in the TLR4 intracellular domain preventing TLR4 signaling, and strain-matched wild-type control (C3H/HeOuJ) mice were infected intracerebrally or intraperitoneally with various doses of scrapie inoculum. Incubation periods were significantly shortened in C3H/HeJ compared with C3H/HeOuJ mice, regardless of the route of infection or dose administered. At the clinical phase of disease, brain PrP(Sc) levels in the two strains of mice showed no significant differences by Western blotting. In addition, compared with macrophages from C3H/HeOuJ mice, those from C3H/HeJ mice were unresponsive to fibrillogenic PrP peptides (PrP residues 106 to 126 [PrP(106-126)] and PrP(118-135)) and the TLR4 agonist lipopolysaccharide but not to the TLR2 agonist zymosan, as measured by cytokine production. These data confirm that innate immune activation via TLR signaling interferes with scrapie infection. Furthermore, the results also suggest that the scrapie pathogen, or a component(s) thereof, is capable of stimulating an innate immune response that is active in the central nervous system, since C3H/HeJ mice, which lack the response, exhibit shortened incubation periods following both intraperitoneal and intracerebral infections.  相似文献   

5.
Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp(0/0) mice, which express mouse PrP missing only the OR region on the PrP-null background. Incubation times of these mice were not extended. Protease-resistant PrPΔOR, or PrP(Sc)ΔOR, was easily detectable but lower in the brains of these mice, compared to that in control wild-type mice. Consistently, prion titers were slightly lower and astrogliosis was milder in their brains. However, in their spinal cords, PrP(Sc)ΔOR and prion titers were abundant and astrogliosis was as strong as in control wild-type mice. These results indicate that the role of the OR region in prion susceptibility and pathogenesis of the disease is limited. We also found that the PrP(Sc)ΔOR, including the pre-OR residues 23-50, was unusually protease-resistant, indicating that deletion of the OR region could cause structural changes to the pre-OR region upon prion infection, leading to formation of a protease-resistant structure for the pre-OR region.  相似文献   

6.
Mice devoid of PrP are resistant to scrapie and fail to replicate the agent. Introduction of transgenes expressing PrP into such mice restores susceptibility to scrapie. We find that truncated PrP devoid of the five copper binding octarepeats still sustains scrapie infection; however, incubation times are longer and prion titers and protease-resistant PrP are about 30-fold lower than in wild-type mice. Surprisingly, brains of terminally ill animals show no histopathology typical for scrapie. However, in the spinal cord, infectivity, gliosis, and motor neuron loss are as in scrapie-infected wild-type controls. Thus, while the region comprising the octarepeats is not essential for mediating pathogenesis and prion replication, it modulates the extent of these events and of disease presentation.  相似文献   

7.
The serotonergic system has been hypothesized to play an important role in prion diseases. Specifically, hyperactivity of the serotonergic system in prion diseases is suggested by an increase in the turnover rate of the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) in human and experimental prion diseases. The 5-HT transporter (5-HTT) determines the duration of serotonergic neurotransmission by way of reuptake of 5-HT from the extracellular space. 5-HTT availability is reduced in brains of patients with the human prion disease familial fatal insomnia. To further clarify a possible role of the 5-HTT in prion diseases we investigated whether mice lacking the 5-HTT display an altered susceptibility to experimental scrapie infection. Surprisingly, 5-HTT knockout mice developed mouse scrapie in a time course similar to wildtype control mice with accumulation of the pathological prion protein, PrP(Sc) and with typical pathological hallmarks of the disease. These findings argue against a major role of the 5-HTT in the pathogenesis of prion diseases in mice.  相似文献   

8.
Given the critical role of the prion protein (PrP) in the transmission and pathogenesis of experimental scrapie, we investigated the PrP gene and its protein products in three hamster species, Chinese (CHa), Armenian (AHa), and Syrian (SHa), each of which were found to have distinctive scrapie incubation times. Passaging studies demonstrated that the host species, and not the source of scrapie prions, determined the incubation time for each species, and histochemical studies of hamsters with clinical signs of scrapie revealed characteristic patterns of neuropathology. Northern (RNA) analysis showed the size of PrP mRNA from CHa, AHa, and SHa hamsters to be 2.5, 2.4, and 2.1 kilobases, respectively. Immunoblotting demonstrated that the PrP isoforms were of similar size (33 to 35 kilodaltons); however, the monoclonal antibody 13A5 raised against SHa PrP did not react with the CHa or AHa PrP molecules. Comparison of the three predicted amino acid sequences revealed that each is distinct. Furthermore, differences within the PrP open reading frame that uniquely distinguish the three hamster species are within a hydrophilic segment of 11 amino acids that includes polymorphisms linked to scrapie incubation times in inbred mice and an inherited prion disease of humans. Single polymorphisms in this region correlate with the presence or absence of amyloid plaques for a given hamster species or mouse inbred strain. Our findings demonstrate distinctive molecular, pathological, and clinical characteristics of scrapie in three related species and are consistent with the hypothesis that molecular properties of the host PrP play a pivotal role in determining the incubation time and neuropathological features of scrapie.  相似文献   

9.
Tauopathies are a family of neurodegenerative diseases in which fibrils of human hyperphosphorylated tau (P-tau) are believed to cause neuropathology. In Alzheimer disease, P-tau associates with A-beta amyloid and contributes to disease pathogenesis. In familial human prion diseases and variant CJD, P-tau often co-associates with prion protein amyloid, and might also accelerate disease progression. To test this latter possibility, here we compared progression of amyloid prion disease in vivo after scrapie infection of mice with and without expression of human tau. The mice used expressed both anchorless prion protein (PrP) and membrane-anchored PrP, that generate disease associated amyloid and non-amyloid PrP (PrPSc) after scrapie infection. Human P-tau induced by scrapie infection was only rarely associated with non-amyloid PrPSc, but abundant human P-tau was detected at extracellular, perivascular and axonal deposits associated with amyloid PrPSc. This pathology was quite similar to that seen in familial prion diseases. However, association of human and mouse P-tau with amyloid PrPSc did not diminish survival time following prion infection in these mice. By analogy, human P-tau may not affect prion disease progression in humans. Alternatively, these results might be due to other factors, including rapidity of disease, blocking effects by mouse tau, or low toxicity of human P-tau in this model.  相似文献   

10.
Prion diseases are fatal neurodegenerative diseases of humans and animals characterized by gray matter spongiosis and accumulation of aggregated, misfolded, protease-resistant prion protein (PrPres). PrPres can be deposited in brain in an amyloid-form and/or non-amyloid form, and is derived from host-encoded protease-sensitive PrP (PrPsen), a protein normally anchored to the plasma membrane by glycosylphosphatidylinositol (GPI). Previously, using heterozygous transgenic mice expressing only anchorless PrP, we found that PrP anchoring to the cell membrane was required for typical clinical scrapie. However, in the present experiments, using homozygous transgenic mice expressing two-fold more anchorless PrP, scrapie infection induced a new fatal disease with unique clinical signs and altered neuropathology, compared to non-transgenic mice expressing only anchored PrP. Brain tissue of transgenic mice had high amounts of infectivity, and histopathology showed dense amyloid PrPres plaque deposits without gray matter spongiosis. In contrast, infected non-transgenic mice had diffuse non-amyloid PrPres deposits with significant gray matter spongiosis. Brain graft studies suggested that anchored PrPsen expression was required for gray matter spongiosis during prion infection. Furthermore, electron and light microscopic studies in infected transgenic mice demonstrated several pathogenic processes not seen in typical prion disease, including cerebral amyloid angiopathy and ultrastructural alterations in perivascular neuropil. These findings were similar to certain human familial prion diseases as well as to non-prion human neurodegenerative diseases, such as Alzheimer''s disease.  相似文献   

11.
Prion disease incubation time in mice is determined by many factors including PrP expression level, Prnp alleles, genetic background, prion strain and route of inoculation. Sex differences have been described in age of onset for vCJD and in disease duration for both vCJD and sporadic CJD and have also been shown in experimental models. The sex effects reported for mouse incubation times are often contradictory and detail only one strain of mice or prions, resulting in broad generalisations and a confusing picture. To clarify the effect of sex on prion disease incubation time in mice we have compared male and female transmission data from twelve different inbred lines of mice inoculated with at least two prion strains, representing both mouse-adapted scrapie and BSE. Our data show that sex can have a highly significant difference on incubation time. However, this is limited to particular mouse and prion strain combinations. No sex differences were seen in endogenous PrP(C) levels nor in the neuropathological markers of prion disease: PrP(Sc) distribution, spongiosis, neuronal loss and gliosis. These data suggest that when comparing incubation times between experimental groups, such as testing the effects of modifier genes or therapeutics, single sex groups should be used.  相似文献   

12.
Transmissible spongiform encephalopathies (TSE) or prion diseases are neurodegenerative disorders associated with conversion of normal host prion protein (PrP) to a misfolded, protease-resistant form (PrPres). Genetic variations of prion protein in humans and animals can alter susceptibility to both familial and infectious prion diseases. The N171S PrP polymorphism is found mainly in humans of African descent, but its low incidence has precluded study of its possible influence on prion disease. Similar to previous experiments of others, for laboratory studies we created a transgenic model expressing the mouse PrP homolog, PrP-170S, of human PrP-171S. Since PrP polymorphisms can vary in their effects on different TSE diseases, we tested these mice with four different strains of mouse-adapted scrapie. Whereas 22L and ME7 scrapie strains induced typical clinical disease, neuropathology and accumulation of PrPres in all transgenic mice at 99-128 average days post-inoculation, strains RML and 79A produced clinical disease and PrPres formation in only a small subset of mice at very late times. When mice expressing both PrP-170S and PrP-170N were inoculated with RML scrapie, dominant-negative inhibition of disease did not occur, possibly because interaction of strain RML with PrP-170S was minimal. Surprisingly, in vitro PrP conversion using protein misfolding cyclic amplification (PMCA), did not reproduce the in vivo findings, suggesting that the resistance noted in live mice might be due to factors or conditions not present in vitro. These findings suggest that in vivo conversion of PrP-170S by RML and 79A scrapie strains was slow and inefficient. PrP-170S mice may be an example of the conformational selection model where the structure of some prion strains does not favor interactions with PrP molecules expressing certain polymorphisms.  相似文献   

13.
Prion diseases are fatal and at present there are neither cures nor palliative therapies known/available, which delay disease onset or progression. Cholesterol-lowering drugs have been reported to inhibit prion replication in infected cell cultures and to modulate inflammatory reactions. We aimed to determine whether simvastatin-treatment could delay disease onset in a murine prion model. Groups of mice were intracerebrally infected with two doses of scrapie strain 139A. Simvastatin-treatment commenced 100 days postinfection. The treatment did not affect deposition of misfolded prion protein PrP(res). However, expression of marker proteins for glia activation like major histocompatibility class II and galectin-3 was found to be affected. Analysis of brain cholesterol synthesis and metabolism revealed a mild reduction in cholesterol precursor levels, whereas levels of cholesterol and cholesterol metabolites were unchanged. Simvastatin-treatment significantly delayed disease progression and prolonged survival times in established prion infection of the CNS (p < or = 0.0003). The results suggest that modulation of glial responses and the therapeutic benefit observed in our murine prion model of simvastatin is not due to the cholesterol-lowering effect of this drug.  相似文献   

14.
Scrapie is a transmissible neurodegenerative disease caused by unusual pathogens called prions. The interval between inoculation and illness for experimental mouse scrapie is dramatically influenced by an incubation time gene (Prn-i) that is linked to Prn-p, the structural gene for prion protein (PrP). Although prion proteins from mouse strains with short and long scrapie incubation times differ by two amino acids, mice with discordant disease phenotype and Prn-p genotype occur in segregating crosses, suggesting recombination between Prn-p and a distinct incubation time locus. In addition, expression of Prn-p(b) transgenes from long incubation time mice shortened, rather than prolonged, incubation time. In this study, mice carrying chromosomes with meiotic crossovers near Prn-p were analyzed for scrapie incubation time phenotype. The results indicated that Prn-i (should it exist) must lie within an interval 0.67 cM proximal and 0.22 cM distal to Prn-p. The results also suggest that the cumulative effects of other genes, rather than meiotic recombination, were responsible for the putative recombinants of earlier studies. However, the effect of Prn-p(b) transgene expression in abbreviating scrapie incubation time was mitigated when the transgenes were transferred to mice with an endogenous long incubation time allele. Thus, Prn-p(b) transgenes and Prn-i may modulate scrapie pathogenesis by different mechanisms.  相似文献   

15.
After infection with RML murine scrapie agent, transgenic (tg) mice expressing prion protein (PrP) without its glycophosphatidylinositol (GPI) membrane anchor (GPI(-/-) PrP tg mice) continue to make abundant amounts of the abnormally folded disease-associated PrPres but have a normal life span. In contrast, all age-, sex-, and genetically matched mice with a GPI-anchored PrP become moribund and die due to a chronic progressive neurodegenerative disease by 160 days after RML scrapie agent infection. We report here that infected GPI(-/-) PrP tg mice, although free from progressive neurodegenerative disease of the cerebellum and extrapyramidal and pyramidal systems, nevertheless suffer defects in learning and memory, long-term potentiation, and neuronal excitability. Such dysfunction increases over time and is associated with an increase in gamma aminobutyric acid (GABA) inhibition but not loss of excitatory glutamate/N-methyl-d-aspartic acid. Enhanced deposition of abnormally folded infectious PrP (PrPsc or PrPres) in the central nervous system (CNS) localizes with GABAA receptors. This occurs with minimal evidence of CNS spongiosis or apoptosis of neurons. The use of monoclonal antibodies reveals an association of PrPres with GABAA receptors. Thus, the clinical defects of learning and memory loss in vivo in GPI(-/-) PrP tg mice infected with scrapie agent may likely involve the GABAergic pathway.  相似文献   

16.
Prion diseases currently have no effective therapy. These illnesses affect both animal and human populations, and are characterized by the conformational change of a normal self protein PrP(C) (C for cellular) to a pathological and infectious conformer, PrP(Sc) (Sc for scrapie). We used a well characterized tissue culture model of prion infection, where mouse neuroblastoma cells (N2a) were infected with 22L PrP(Sc), to screen compounds for anti-prion activity. In a prior study we designed a library of styryl based, potential imaging compounds which were selected for high affinity binding to Alzheimer's disease β-amyloid plaques and good blood-brain barrier permeability. In the current study we screened this library for activity in the N2a/22L tissue culture system. We also tested the anti-prion activity of two clinically used drugs, trimipramine and fluphenazine, in the N2a/22L system. These were selected based on their structural similarity to quinacrine, which was previously reported to have anti-prion activity. All the compounds were also screened for toxicity in tissue culture and their ability to disaggregate amyloid fibrils composed of PrP and β-amyloid synthetic peptides in vitro. Two of the imaging agents, 23I and 59, were found to be both effective at inhibiting prion infection in N2a/22L tissue culture and to be non-toxic. These two compounds, as well as trimipramine and fluphenazine were evaluated in vivo using wild-type CD-1 mice infected peripherally with 139A PrP(Sc). All four agents significantly prolonged the asymptomatic incubation period of prion infection (p<0.0001 log-rank test), as well as significantly reducing the degree of spongiform change, astrocytosis and PrP(Sc) levels in the brains of treated mice. These four compounds can be considered, with further development, as candidates for prion therapy.  相似文献   

17.
Prion diseases are transmissible neurodegenerative diseases caused by a conformational isoform of the prion protein (PrP), a host-encoded cell surface sialoglycoprotein. Recent evidence suggests a cytosolic fraction of PrP (cyPrP) functions either as an initiating factor or toxic element of prion disease. When expressed in cultured cells, cyPrP acquires properties of the infectious conformation of PrP (PrP(Sc)), including insolubility, protease resistance, aggregation, and toxicity. Transgenic mice (2D1 and 1D4 lines) that coexpress cyPrP and PrP(C) exhibit focal cerebellar atrophy, scratching behavior, and gait abnormalities suggestive of prion disease, although they lack protease-resistant PrP. To determine if the coexpression of PrP(C) is necessary or inhibitory to the phenotype of these mice, we crossed Tg1D4(Prnp(+/+)) mice with PrP-ablated mice (TgPrnp(o/o)) to generate Tg1D4(Prnp(o/o)) mice and followed the development of disease and pathological phenotype. We found no difference in the onset of symptoms or the clinical or pathological phenotype of disease between Tg1D4(Prnp(+/+)) and Tg1D4(Prnp(o/o)) mice, suggesting that cyPrP and PrP(C) function independently in the disease state. Additionally, Tg1D4(Prnp(o/o)) mice were resistant to challenge with mouse-adapted scrapie (RML), suggesting cyPrP is inaccessible to PrP(Sc). We conclude that disease phenotype and cellular toxicity associated with the expression of cyPrP are independent of PrP(C) and the generation of typical prion disease.  相似文献   

18.
Two prion strains with identical incubation periods in mice exhibited distinct incubation periods and different neuropathological profiles upon serial transmission to transgenic mice expressing chimeric Syrian hamster/mouse (MH2M) prion protein (PrP) genes [Tg(MH2M) mice] and subsequent transmission to Syrian hamsters. After transmission to Syrian hamsters, the Me7 strain was indistinguishable from the previously established Syrian hamster strain Sc237, despite having been derived from an independent ancestral source. This apparent convergence suggests that prion diversity may be limited. The Me7 mouse strain could also be transmitted directly to Syrian hamsters, but when derived in this way, its properties were distinct from those of Me7 passaged through Tg(MH2M) mice. The Me7 strain did not appear permanently altered in either case, since the original incubation period could be restored by effectively reversing the series of passages. Prion diversity enciphered in the conformation of the scrapie isoform of PrP (PrP(Sc)) (G. C. Telling et al., Science 274:2079-2082, 1996) seems to be limited by the sequence of the PrP substrates serially converted into PrP(Sc), while prions are propagated through interactions between the cellular and scrapie isoforms of PrP.  相似文献   

19.
Fatal neurodegenerative prion diseases are caused by the transmissible PrPSc prion agent whose initial replication after peripheral inoculation takes place in follicular dendritic cells present in germinal centers of lymphoid organs. However, prion replication also occurs in lymphoid cells. To assess the role of the hematopoietic compartment in neuroinvasion and prion replication, we generated chimeric mice, on a uniform congenic C57/BL6J background, by bone marrow replacement with hematopoietic cells expressing different levels of PrP protein. Nine different types of chimeric mice were inoculated intraperitoneally either with the lymphotropic Rocky Mountain Laboratory (RML) strain or the non lymphotropic ME-7 scrapie strain, at different doses. Here, we clearly demonstrate that overexpression of PrP by the hematopoietic system, or the lack of PrP expression by the bone marrow derived cells, does not change the incubation time period of the disease, even when the mice are infected at limiting doses. We conclude that the hematopoietic compartment is more or less permissive to prion replication, both for RML and ME-7, but does not play a role in neuroinvasion.  相似文献   

20.
BACKGROUND: It has been proposed that the prion, the infectious agent of transmissible spongiform encephalopathies, is PrPSc, a post-translationally modified form of the normal host protein PrPC. We showed previously that mice devoid of PrPC (Prn-p0/0) are completely resistant to scrapie. We now report on the unexpected response of heterozygous (Prn-p0/+) mice to scrapie infection. MATERIALS AND METHODS: Prn-p0/+, Prn-p0/0 and Prn-p+/+ mice were obtained from crosses of Prn-p0/+ mice. Mice were inoculated intracerebrally with mouse-adapted scrapie agent and the clinical progression of the disease recorded. Mice were sacrificed at intervals, PrPSc was determined as protease-resistant PrP and the prion titer by the incubation time assay. RESULTS: Prn-p0/+ mice, which have about half the normal level of PrPC in their brains, show enhanced resistance to scrapie, as manifested by a significant delay in onset and progression of clinical disease. However, while in wild type animals an increase in prion titer and PrPSc levels is followed within weeks by scrapie symptoms and death, heterozygous Prn-p0/+ mice remain free of symptoms for many months despite similar levels of scrapie infectivity and PrPSc. CONCLUSIONS: Our findings extend previous reports showing an inverse relationship between PrP expression level and incubation time for scrapie. However, contrary to expectation, overall accumulation of PrPSc and prions to a high level do not necessarily lead to clinical disease. These findings raise the question whether high titers of prion infectivity could also persist for long periods under natural circumstances in the absence of clinical symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号