首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A MAPKK-like mitotic kinase, TOPK, implies the formation of mitotic spindles and spindle midzone and accomplishing cytokinesis, however, its underlying mechanism remains unclear. A microtubule bundling protein, PRC1, plays a pivotal role in the formation of mitotic spindles and spindle midzone. Because of their functional resemblance, we attempted to clarify the links between these two molecules. TOPK supported mitotic advance via the cdk1/cyclin B1-dependent phosphorylation of PRC1. TOPK induced the phosphorylation of PRC1 at T481 in vivo, however, TOPK did not phosphorylate PRC1 in vitro. TOPK induced the phosphorylation of PRC1 at T481 only when the cdk1/cyclin B1 existed simultaneously in vitro. Both the enzymatic activity of TOPK and association competence of TOPK with PRC1 were mandatory for this phosphorylation. TOPK binds to cdk1/cyclin B1, microtubules and PRC1 via its unique region near the C terminus. TOPK co-localized closely with cdk1 throughout the cell cycle in vivo. Collectively, these data indicate that TOPK, which makes a kinase-substrate complex with cdk1/cyclin B1 and PRC1 on microtubules during mitosis, enhances the cdk1/cyclin B1-dependent phosphorylation of PRC1 and thereby strongly promotes cytokinesis.  相似文献   

2.
BARD1 heterodimerizes with BRCA1, forming an E3 ubiquitin ligase that functions at nuclear foci to repair DNA damage and the centrosome to regulate mitosis. We compared BARD1 recruitment at these structures using fluorescence recovery after photobleaching assays to measure YFP-BARD1 dynamics in live cells. In nuclei at ionizing radiation-induced foci, 20% of the BARD1 pool was immobile and 80% of slow mobility exhibiting a recovery time > 500 s. In contrast, at centrosomes 83% of BARD1 was rapidly mobile with extremely fast turnover (recovery time ~ 20 s). The ~ 25-fold faster exchange of BARD1 at centrosomes correlated with BRCA1-independent recruitment. We mapped key targeting sequences to a combination of the N and C-termini, and showed that mutation of the nuclear export signal reduced centrosome localization by 50%, revealing a role for CRM1. Deletion of the sequence 128-550 increased BARD1 turnover at the centrosome, consistent with a role in transient associations. Conversely, the cancer mutation Q564H reduced turnover by 25%. BARD1 is one of the most highly mobile proteins yet detected at the centrosome, and in contrast to its localization at DNA repair foci, which requires dimerization with BRCA1, targeting of BARD1 to the centrosome occurs prior to heterodimerization and its rapid turnover may provide a mechanism to regulate dimer formation.  相似文献   

3.
The G1/S phase restriction point is a critical checkpoint that interfaces between the cell cycle regulatory machinery and DNA replicator proteins. Here, we report a novel function for the cyclin-dependent kinase inhibitor p27Kip1 in inhibiting DNA replication through its interaction with MCM7, a DNA replication protein that is essential for initiation of DNA replication and maintenance of genomic integrity. We find that p27Kip1 binds the conserved minichromosome maintenance (MCM) domain of MCM7. The proteins interact endogenously in vivo in a growth factor-dependent manner, such that the carboxyl terminal domain of p27Kip1 inhibits DNA replication independent of its function as a cyclin-dependent kinase inhibitor. This novel function of p27Kip1 may prevent inappropriate initiation of DNA replication prior to S phase.  相似文献   

4.
H Ge  G Wang  L Zhang  S Wang  Z Zou  S Yan  Y Wang  Z Zhang 《Gene》2012,506(2):417-422
Interleukin receptor-associated kinase (IRAK)-1 binding protein 1 (IRAK1BP1) is a critical factor in preventing dangerous overproduction of proinflammatory cytokines by the innate immune system and in influencing the specificity of TLR responses. In this study, a first molluscan IRAK1BP1 gene, saIRAK1BP1, was cloned from the small abalone (Haliotis diversicolor). Its full-length cDNA sequence is 1047bp, with a 747bp open reading frame encoding a protein of 249 aa. The molecular mass of the deduced protein is approximately 28.1kDa with an estimated pI of 8.87, and shows highest identity (52%) to acorn worm Saccoglossus kowalevskii. Amino acid sequence analysis revealed that saIRAK1BP1 shares a conserved SIMPL domain. Quantitative real-time PCR was employed to investigate the tissue distribution of saIRAK1BP1 mRNA, and its expression in abalone under bacteria challenge and larvae at different developmental stages. The saIRAK1BP1 mRNA could be detected in all examined tissues, with the highest expression level in hemocytes, and was up-regulated in gills, kidneys and hemocytes after bacteria injection. Additionally, saIRAK1BP1 was constitutively expressed at all examined developmental stages. These results indicate that saIRAK1BP1 play an important role in the adult abalone immune system and might be essential in embryo and larval development in abalone.  相似文献   

5.
Members of the Toll-like receptor (TLR) and IL-1 receptor (IL-1R) family initiate signalling pathways that shape innate immunity. Pellino proteins have recently been implicated as evolutionary conserved scaffold proteins in TLR/IL-1R signalling leading to nuclear factor-kappaB and mitogen activated protein kinase-dependent gene expression. We found that Pellino proteins contain a new RING-like motif. Because RING motifs are a feature of a subclass of E3-ubiquitin-ligases that target specific proteins for ubiquitination, we suggest that Pellino proteins are involved in TLR/IL-1R signalling not only as scaffold proteins but also as RING E3-ubiquitin-ligases. In support of this hypothesis we show that Pellino proteins induce IRAK-1 polyubiquitination in a RING-dependent manner. We further propose a model in which Pellino-mediated IRAK-1 polyubiquitination regulates TLR/IL-1R signalling.  相似文献   

6.
The purpose of this study is to clarify that the amino acid residues (Asp62 and Arg193) are responsible for the activity and stability of arginine kinase (AK). The amino acid residues Asp62 (D62) and Arg193 (R193) are strictly conserved in monomeric AKs and form an ion pair in the transition state analogue complex. In this research, we replaced D62 with glutamate (E) or glycine (G) and R193 with lysine (K) or glycine (G). The mutants of D62E and R193K retained almost 90% of the wild-type activity, whereas D62G and R193G had a pronounced loss in activity. A detailed comparison was made between the physic-chemical properties and conformational changes of wild-type AK and the mutants by means of ultraviolet (UV) difference and fluorescence spectra. The results indicated that the conformation of all of the mutants had been changed and the stability in a urea solution was also reduced. We speculated that the hydrogen bond and electrostatic interactions formed between residues 62 and 193 play a key role in stabilizing the structure and mediating the synergism in substrate binding of arginine kinase from greasyback shrimp (Metapenaeus ensis).  相似文献   

7.
Kim YH  Sung KS  Lee SJ  Kim YO  Choi CY  Kim Y 《FEBS letters》2005,579(27):6272-6278
The modification of homeodomain-interacting protein kinase 2 (HIPK2) by small ubiquitin-like modifier 1 (SUMO-1) plays an important role in its targeting into the promyelocytic leukemia body, as well as in its differential interaction with binding partner, but the desumoylation of HIPK2 by SUMO-specific proteases is largely unknown. In this study, we show that HIPK2 is a desumoylation target for the SUMO-specific protease SENP1 that shuttles between the cytoplasm and the nucleus. Mutation analyses reveal that SENP1 contains the nuclear export sequence (NES) within the extreme carboxyl-terminal region, and SENP1 is exported to the cytoplasm in a NES-dependent manner. Sumoylated HIPK2 are deconjugated by SENP1 both in vitro and in cultured cells, and the desumoylation is enhanced either by the forced translocation of SENP1 into the nucleus or by the SENP1 NES mutant. Concomitantly, desumoylation induces dissociation of HIPK2 from nuclear bodies. These results demonstrate that HIPK2 is a target for SENP1 desumoylation, and suggest that the desumoylation of HIPK2 may be regulated by the cytoplasmic-nuclear shuttling of SENP1.  相似文献   

8.
9.
Deubiquitinating enzymes (DUBs), capable of removing ubiquitin (Ub) from protein substrates, are involved in numerous biological processes. The ubiquitin C-terminal hydrolases (UCHs) subfamily of DUBs consists of four members: UCH-L1, UCH-L3, UCH37 and BRCA1-associated protein-1 (BAP1). UCH-L1 possesses deubiquitinating activity and dimerization-dependent ubiquitin ligase activity, and functions as a mono-ubiquitin stabilizer; UCH-L3 does both deubiquitinating and deneddylating activity, except dimerization or ligase activity, and unlike UCH-L1, can interact with Lys48-linked Ub dimers to protect it from degradation and in the meanwhile to inhibit its hydrolase activity; UCH37 is responsible for the deubiquitinating activity in the 19S proteasome regulatory complex, and as indicated by the recent study, UCH37 is also associated with the human Ino80 chromatin-remodeling complex (hINO80) in the nucleus and can be activated via transient association of 19S regulatory particle- or proteasome-bound hRpn13 with hINO80; BAP1, binding to the wild-type BRCA1 RING finger domain, is regarded as a tumor suppressor, but for such suppressing activity, as demonstrated otherwise, both deubiquitinating activity and nucleus localization are required. There is growing evidence that UCH enzymes and human malignancies are closely correlated. Previous studies have shown that UCH enzymes play a crucial role in some signalings and cell-cycle regulation. In this review, we provided an insight into the relation between UCH enzymes and oncogenesis.  相似文献   

10.
The mammalian AP-endonuclease (APE1) repairs apurinic/apyrimidinic (AP) sites and strand breaks with 3′ blocks in the genome that are formed both endogenously and as intermediates during base excision repair. APE1 has an unrelated activity as a redox activator (and named Ref-1) for several trans-acting factors. In order to identify whether any of the seven cysteine residues in human APE1 affects its enzymatic function, we substituted these singly or multiply with serine. The repair activity is not affected in any of the mutants except those with C99S mutation. The Ser99-containing mutant lost affinity for DNA and its activity was inhibited by 10 mM Mg2+. However, the Ser99 mutant has normal activity in 2 mM Mg2+. Using crystallographic data and molecular dynamics simulation, we have provided a mechanistic basis for the altered properties of the C99S mutant. We earlier predicted that Mg2+, with potential binding sites A and B, binds at the B site of wild-type APE1-substrate complex and moves to the A site after cleavage occurs, as observed in the crystal structure. The APE1-substrate complex is stabilized by a H bond between His309 and the AP site. We now show that this bond is broken to destabilize the complex in the absence of the Mg2+. This effect due to the mutation of Cys99, ∼ 16 Å from the active site, on the DNA binding and activity is surprising. Mg2+ at the B site promotes stabilization of the C99S mutant complex. At higher Mg2+ concentration the A site is also filled, causing the B-site Mg2+ to shift together with the AP site. At the same time, the H bond between His309 and the AP site shifts toward the 5′ site of DNA. These shifts could explain the lower activity of the C99S mutant at higher [Mg2+]. The unexpected involvement of Cys99 in APE1's substrate binding and catalysis provides an example of involvement of a residue far from the active site.  相似文献   

11.
12.
13.
Cdc2 kinase is a catalytic subunit of the maturation-promoting factor (MPF), a central factor for inducing the meiotic maturation of oocytes. MPF has been studied in a wide variety of animal species; however, its expression in crustaceans is poorly characterized. In this study, a complete cDNA sequence of Cdc2 kinase was cloned from the red claw crayfish, Cherax quadricarinatus, and its spatiotemporal expression profiles were analyzed. The Cdc2 cDNA (1769 bp) encodes for a 299 amino acid protein with a calculated molecular weight of 34.7 kDa. Quantitative real-time PCR demonstrated that Cdc2 mRNA was expressed mainly in the ovary tissue and the expression decreased as the ovaries developed. Immunohistochemistry analysis revealed that the Cdc2 protein relocated from the cytoplasm to the nucleus during oogenesis. These findings suggest that Cdc2 kinase may play an important role in the gametogenesis and gonad development in C. quadricarinatus.  相似文献   

14.
15.
16.
Zhang Q  Wang J  Fan S  Wang L  Cao L  Tang K  Peng C  Li Z  Li W  Gan K  Liu Z  Li X  Shen S  Li G 《FEBS letters》2005,579(17):3674-3682
LRRC4, a novel member of LRR superfamily thought to be involved in development and tumorigenesis of the nervous tissue, has the potential to suppress tumorigenesis and cell proliferation of U251MG cells. This study aimed at revealing the correlation between expression of LRRC4 and the maintenance of normal function and tumorigenesis suppression within the central nervous system. We systematically analyzed the expression and tissue distributions of the gene in tissues. Results showed that LRRC4 expression was limited to normal adult brain, both in human and in mouse, and exhibited a development-regulated pattern, but was down-regulated in brain tumor tissues and U251MG cell line. Furthermore, dynamic alterations in gene expression associated with cell cycle progression were investigated by using Tet-on system. Results showed that LRRC4 induced a cell cycle delay at the late G1 phase, probably through the alteration of the expression of different cell cycle regulating proteins responsible for mediating G1-S progression, such as p21(Waf1/Cip1) and p27(Kip1), Cdk2 and PCNA, p-ERK1/2. These findings suggest that LRRC4 may play an important role in maintaining normal function and suppressing tumorigenesis in the central nervous system.  相似文献   

17.
Regulated necrosis occurs in various pathophysiological conditions under oxidative stress. Here, we report that receptor-interacting protein kinase 1 (RIPK1), a key player in one type of regulated necrosis (necroptosis), also participates in another type of poly (ADP-ribose) polymerase 1 (PARP1)-dependent regulated necrosis (parthanatos). Various biological signatures of parthanatos were significantly attenuated in Ripk1?/? mouse embryonic fibroblasts, including PARylation, nuclear translocation of apoptosis-inducing factor, and PARP1-dependent cell death under H2O2 exposure. Hence, we investigated whether RIPK1 regulates the activity of PARP1. RIPK1 activated PARP1 via an interaction with the catalytic domain of PARP1 in the nucleus. Of note, both wild type and kinase-dead mutant RIPK1 induced PARP1 activation and led to PARP1-mediated cell death upon H2O2 insult, demonstrating the kinase-independent regulation of RIPK1 in PARP1 activation. Collectively, our results demonstrate the existence of a kinase-independent role of nuclear RIPK1 in the regulation of PARP1.  相似文献   

18.
N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.  相似文献   

19.
Clusterin (CLU) plays numerous roles in mammalian cells after stress. A review of the recent literature strongly suggests potential roles for CLU proteins in low dose ionizing radiation (IR)-inducible adaptive responses, bystander effects, and delayed death and genomic instability. Its most striking and evident feature is the inducibility of the CLU promoter after low, as well as high, doses of IR. Two major forms of CLU, secreted (sCLU) and nuclear (nCLU), possess opposite functions in cellular responses to IR: sCLU is cytoprotective, whereas nCLU (a byproduct of alternative splicing) is a pro-death factor. Recent studies from our laboratory and others demonstrated that down-regulation of sCLU by specific siRNA increased cytotoxic responses to chemotherapy and IR. sCLU was induced after low non-toxic doses of IR (0.02-0.5 Gy) in human cultured cells and in mice in vivo. The low dose inducibility of this survival protein suggests a possible role for sCLU in radiation adaptive responses, characterized by increased cell radioresistance after exposure to low adapting IR doses. Although it is still unclear whether the adaptive response is beneficial or not to cells, survival of damaged cells after IR may lead to genomic instability in the descendants of surviving cells. Recent studies indicate a link between sCLU accumulation and cancer incidence, as well as aging, supporting involvement of the protein in the development of genomic instability. Secreted after IR, sCLU may also alter intracellular communication due to its ability to bind cell surface receptors, such as the TGF-beta receptors (types I and II). This interference with signaling pathways may contribute to IR-induced bystander effects. We hypothesize that activation of the TGF-beta signaling pathway, which often occurs after IR exposure, can in turn activate the CLU promoter. TGF-beta and IR-inducible de novo synthesized sCLU may then bind the TGF-beta receptors and suppress downstream growth arrest signaling. This complicated negative feedback regulation most certainly depends on the cellular microenvironment, but undoubtedly represents a potential link between IR-induced adaptive responses, genomic instability and bystander effects. Further elucidation of clusterin protein functions in IR responses are clearly warranted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号