首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic parameters of in vivo ethylene metabolism by seedlings of Pisum sativum L. cv. Alaska have been determined. The oxidation of ethylene to CO2, (Ox) and the incorporation of ethylene into the tissue (TI) were both shown to display Michaelis-Menten kinetics (Km Ox = 0.9 × 10–6 M liquid phase, Vmax Ox = 2.4 × 10–10 moles g dry mass h–1 Km TI = 1.6 × 10–6 M liquid phase, Vmax TI = 4.5 × 10–10 moles g–1 dry mass h–1). Propylene competitively inhibited both Ox (Ki = 7.0 × 10–6 M) and TI (Ki = 3.7 × 10–7 M). A system comparable to Ox was absent from imbibed cotyledons of Vicia faba L. cv. Aquadulce even at saturating concentrations of ethylene similar to those used in kinetic analysis on Pisum. Silver ions were shown to inhibit TI but promoted Ox, while carbon dioxide inhibited Ox but promoted TI. Kinetic data on both these effects are presented. Data on the effect of a range of concentrations of CO2 on TI and Ox are also presented.To whom editorial correspondence should be sent  相似文献   

2.
Uptake and incorporation of L-leucine-C14 and L-cystine-S35 was studied in the mycelial [MP] and yeastlike [YP] phases of the dimorphic fungal pathogen,Blastomyces dermatitidis. Both amino acids entered the cells of the two morphological forms ofB. dermatitidis by a permease-like system at low external concentrations of substrate. At high substrate levels, the amino acids entered the cells by a simple diffusion-like process in addition to the permease-like system. Michaelis-Menten constants [Km] for L-leucine was found to be 1.1×10–5 M and 4.4×10–5 M for the MP and YP phases, respectively. The Km for L-cystine was found to be 1.0×10–5 M for the MP and 0.5×10–5 M for the YP. A requirement for energy supplied by metabolic activity was demonstrated by the inhibition of uptake and incorporation of the amino acids by cells incubated with either 2,4-dinitrophenol or sodium azide. Amino acid uptake was broadly tolerant of hydrogen ion concentration, but definite optima were demonstrated at pH 7.0 to 7.5.  相似文献   

3.
Klebsiella aerogenes NCIB 418 assimilates glycerol via alternative pathways: one involves a glycerol kinase with a high affinity for glycerol (apparent K m=1–2×10–6 M), and the second a glycerol dehydrogenase with a much lower affinity for its substrate (apparent K m=2–4×10–2 M).In variously-limited chemostat cultures, one or the other pathway predominated. Thus, aerobic carbonlimited organisms contained only the glycerol kinase pathway whereas aerobic sulphate-limited or ammonia-limited organisms (grown on glycerol) used only the glycerol dehydrogenase pathway. Anaerobic cultures invariably contained glycerol dehydrogenase, and glycerol kinase was absent.Washed suspensions of aerobically-grown organisms oxidized glycerol with kinetics similar to that of the particular enzyme (the primary enzyme of the assimilatory pathway) which they possessed, thus indicating a close association between these two enzymes and the uptake process. But a supply of exogenous glycerol was not a prerequisite for the synthesis of either glycerol kinase or glycerol dehydrogenase, and nor was molecular oxygen the key factor in effecting modulation between the alternative pathways of glycerol metabolism, as had been previously suggested.The physiological significance of dual pathways of glycerol assimilation is discussed.  相似文献   

4.
A barley cDNA clone encoding a cysteine proteinase inhibitor was characterized. The deduced amino acid sequence of this barley cystatin (Hv-CPI) contains the motif QXVXG conserved among members of the cystatin superfamily. The gene (Icy), located on chromosome 2, was expressed in embryos, developing endosperms, leaves and roots as assessed by northern blot analysis. Western blot analysis detected a slightly retarded band in leaves that was not present in roots or seeds. In these two organs a more precise location of Hv-CPI was done by immuno-histochemical analysis, with polyclonal antibodies raised against the recombinant CPI protein expressed in Escherichia coli. This protein efficiently inhibited papain (K i 2.0×10–8 M) and ficin (K i 2.2×10–8 M) and, to a lesser extent, chymopapain (K i 1.6×10–7 M) and was inactive against bromelain. The Icy mRNA expression in vegetative tissues increased in response to anaerobiosis, dark and cold shock (6 °C).these authors contributed equally to this work  相似文献   

5.
Summary Dihydrofolate synthetase (EC 6.3.2.12) from N. gonorrhoeae was isolated and enzyme characteristics were determined. The purified enzyme was found quite stable when stored at –60 °C. About 50% of the enzyme activity wag destroyed within 6 weeks when kept at 4 °C. Maximum velocity was observed at pH 9.3. The enzyme required a monovalent cation, K+ or NH4 + , and divalent cation, Mg2+ or Mn2+ for its function. ATP at 5 mM concentration gave maximum activity. Km values for dihydropteroate and L-glutamate at pH 9.3 were 3.5 × 10–5 M and 6.5 × 10–4 M, respectively. Patterns of product inhibition by dihydrofolate were found to be non-competitive with respect to dihydropteroate, having a Ki value of 5.1 ± 0.8 × 10–4 M, and competitive with respect to L-glutamate, having a Ki value of 6.2 × 10–4 M.  相似文献   

6.
Biodegradation of toxic amides by immobilized Rhodococcus rhodochrous NHB-2 has been studied to generate data for future development of reactors for the treatment of simulated wastewater containing various toxic amides. The whole resting cells were immobilized in different matrices like agar, polyacrylamide and alginate. Agar gel beads were selected for the treatment of simulated wastewater containing 100mM each acetamide, propionamide, and 10mM of acrylamide and packed in a highly compact five-stage plug flow reactor. The immobilized bacterium worked well in a broad pH range from 5 to 10, with an optimum at 8.7. The apparent K m-value for the turnover of acetamide for the resting cells was determined to be around 40mM at pH 8.5 and 55°C, whereas the K m-value of the purified amidase was predicted to be about 20 mM. This organism exhibited greater turnover of aliphatic amides as compared to aromatic amides. Although these cells showed maximal amide-degrading activity at 55°C, simulated wastewater treatment was carried out at 45°C, because of the greater stability of the amidase activity at that temperature. Of note, indices for overall temperature stability, based on the temperature dependence of apparent first order kinetic temperature denaturation constants, were determined to be –7.9±1.1×10–4, and –13.7±1.3×10–4, –14.5±0.7×10–4, and –13.7±0.8×10–4°Cmin, for free cells and cells immobilized in alginate, agar and polyacrylamide respectively. After 250min the reactor showed maximum degradation of acetamide, propionamide and acrylamide of about 97, 100 and 90%, respectively by using 883 enzyme activity units per reactor stage. The results of this investigation showed that R. rhodochrous NHB-2 expressing thermostable amidase could be used for the efficient treatment of wastewater containing toxic amides. Therefore, we suggest that this microbe has a very high potential for the detoxification of toxic amides from industrial effluents and other wastewaters.  相似文献   

7.
AxenicTrentepohlia odorata was cultured at three different NH4Cl levels (3.5 × 10–2, 3.5 × 10–3, 3.5 × 10–4 M) and three different light intensities (48, 76, 122 µmol m–2 s–1). Chloride had no effect on growth over this range of concentration. High light intensity and high NH4Cl concentration enhanced the specific growth rate. The carotenoid content increased under a combination of high light intensity and low N concentration. WhenD. bardawil was exposed to the same combination of growth conditions, there was an increase in its carotenoid content. The light saturation and the light inhibition constants (K s andK i, respectively) for growth, and the saturation constant (K m) for NH4Cl were determined. TheK s andK i values were higher inT. odorata (66.7 and> 122 mol m–2 s–1, respectively) than inD. bardawil (5.1 and 14.7 µmol m–2 s–1, respectively). TheK m value determined at 122 µmol m–2 s–1, however, was lower inT. odorata (0.048 µM) than inD. bardawil (0.062 µM).Author for correspondence  相似文献   

8.
Calcium channels were expressed inXenopus oocytes by means of messenger RNA extracted from the rat thalamo-hypothalamic complex, mRNA(h). Inward barium currents,I Ba, were recorded in Cl-free extracellular solution with 40 mM Ba2+ as a charge carrier, using two-microelectrode technique. Depolarizations from a very negative holding potential (V h=–120 mV) began to activateI Ba at about –80 mV; this current peaked at –30 to –20 mV and reversed at +50 mV, indicating that I Ba may be transferred through the low voltage-activated (LVA) calcium channels. The time-dependent inactivation of the current during a prolonged depolarization to –20 mV was quite slow, followed a single exponential decay with a time constant of 1550 msec, and contained a residual component constituting 30% of the maximum amplitude. The current could not be completely inactivated at any holding potential. As expected for LVA current, a steady-state inactivation curve was shifted towards negative potentials. It could be described by the Boltzmann's equation with the half-inactivation potential of –78 mV, slope factor of 15 mV, and residual level of 0.3. ExpressedI Ba could be blocked by flunarizine (K d=0.42 µM), nifedipine (K d=10 µM), and amiloride at a 500 µM concentration. Among the inorganic Ca2+ channel blockers, the most potent was La3+ (K d=0.48 µM), while Cd2+ and Ni2+ were not very selective and almost thousand-fold less effective (K d=0.52 mM andK d=0.62 mM, respectively) than La3+. Our data show that mRNA(h) induces expression in the oocytes of almost exclusively LVA Ca2+ channels with voltage-dependent and pharmacological properties very similar to those observed for T-type Ca2+ current in native hypothalamic neurons, though kinetic properties of the expressed and natural currents are somewhat different.Neirofiziologiya/Neurophysiology, Vol. 27, No. 3, pp. 183–189, May–June, 1995.  相似文献   

9.
The abilities of various sorbents to adsorb catalase (CAT; EC 1.11.1.6) from filtered culture liquid (FCL) of the fungus Penicillium piceum F-648 were compared. Potassium phosphate, hydroxyapatite (HAP), and coprecipitated sorbents containing calcium phosphate and magnesium hydroxide adsorbed extracellular CAT more efficiently than aluminum oxide, aluminum phosphate, or quartz sand. The enzyme was isolated from FCL of Penicillium piceum with the use of HAP and a binary coprecipitated sorbent, Ca3(PO4)2 + Mg(OH)2, 1 : 1 (CM). The CAT(CM) sample contained the least amount of protein admixture. Its spectra had absorption maximums at 279.6, 406.8 (Soret band), 540, 585, 636, and 703 nm and negative molar ellipticity minimums at 207 and 210–214 nm. The kinetic indices of the samples (K M, V max : K M, and specific activity) were intricately dependent on the protein concentration in the reaction mixture. In dilute solutions, the K M and specific activities of CAT(CM) and CAT(HAP) equaled 667 and 137 mM; 300.9 × 104 and 30.0 × 104 U/mg protein, respectively. The effective velocity constants of inactivation of CAT(HAP), CAT(CM), and FCL in the reaction of H2O2 decomposition increased dramatically after the dilution of samples. In the infinitely dilute solution, they were 4.30 × 10–2, 6.46 × 10–2, and 1.12 × 10–2 s–1, respectively.  相似文献   

10.
Intact and excised cultured pea roots (Pisum sativum L. cv Alaska) were treated with chlorsulfuron at concentrations ranging from 2.8 ×10–4 M to 2.8×10–6 M. At all concentrations this chemical was demonstrated to inhibit the progression of cells from G2 to mitosis (M) and secondarily from G1 to DNA synthesis (S). The S and M phases were not directly affected, but the transition steps into those phases were inhibited. Total protein synthesis was unaffected by treatment of intact roots with 2.8×10–6 M chlorsulfuron. RNA synthesis was inhibited by 43% over a 24-h treatment period. It is hypothesized that chlorsulfuron inhibits cell cycle progression by blocking the G2 and G1 transition points through inhibition of cell cycle specific RNA synthesis.  相似文献   

11.
The influence of Ca homoionic clay minerals (montmorillonite, illite, and kaolinite) on the activity,K m , andV m values of acid phosphatase was examined in model experiments. At each substrate (p-nitrophenyl phosphate) level tested, the addition of increasing amounts of clays (50, 100, and 150 mg, respectively) decreased the activity and increased theK m value from 1.43×10–3 m PNP (in the soluble state) to 82.3×10–3M (montmorillonite), 8.02×10–3 m (kaolinite), and 7.65×10–3 m (illite) at the 150 mg level. The maximum enzyme reaction velocity (V m ) remained nearly constant at different amounts of kaolinite and illite, but increased remarkably with rising quantities of montmorillonite. Apparently, the substrate affinity of sorbed acid phosphatase is significantly lower with montmorillonite than with kaolinite or illite. This may be ascribed to an intensive sorption of both substrate and enzyme to the surface as well as to interlattice sites of montmorillonite.  相似文献   

12.
Summary Active transport of potassium in K+-starvedNeurospora was previously shown to resemble closely potassium uptake in yeast,Chlorella, and higher plants, for which K+ pumps or K+/H+-ATPases had been proposed. ForNeurospora, however, potassium-proton cotransport was demonstrated to operate, with a coupling ratio of 1 H+ to 1 K+ taken inward so that K+, but not H+, moves against its electrochemical gradient (Rodriguez-Navarro et al.,J. Gen. Physiol. 87:649–674).In the present experiments, the current-voltage (I–V) characteristic of K+–H+ cotransport in spherical cells ofNeurospora has been studied with a voltage-clamp technique, using difference-current methods to dissect it from other ion-transport processes in theNeurospora plasma membrane. Addition of 5-200 M K+ to the bathing medium causes 10–150 mV depolarization of the unclamped membrane, and yields a sigmoidI–V curve with a steep slope (maximal conductance of 10–30 S/cm2) for voltages of –300 to –100 mV, i.e., in the normal physiologic range. Outside that range the apparentI–V curve of the K+-H+ symport saturates for both hyperpolarization and depolarization. It fails to cross the voltage axis at its predicted reversal potential, however, an effect which can be attributed to failure of theI–V difference method under reversing conditions.In the absence of voltage clamping, inhibitors—such as cyanide or vanadate—which block the primary proton pump inNeurospora also promptly inhibit K+ transport and K+-H+ currents. But when voltage clamping is used to offset the depolarizing effects of pump blockade, the inhibitors have no immediate effect on K+-H+ currents. Thus, the inhibition of K+ transport usually observed with these agents reflects the kinetic effect of membrane depolarization rather than any direct chemical action on the cotransport system itself.Detailed study of the effects of [K+]o and pHo on theI–V curve for K+-H+ symport has revealed that increasing membrane potential systematicallydecreases the apparent affinity of the transporter for K+, butincreases affinity for protons (K m range: for [K+]o, 15–45 M; for [H+]o, 10–35 nM). This behavior is consistent with two distinct reaction-kinetic models, in which (i) a neutral carrier binds K+ first and H+ last in the forward direction of transport, or (ii) a negatively charged carrier (–2) binds H+ first and K+ last.  相似文献   

13.
This work describes the purification and characterization of a trypsin-like enzyme with fibrinolytic activity present in the abdomen of Haematobia irritans irritans (Diptera: Muscidae). The enzyme was purified using a one-step process, consisting of affinity chromatography on SBTI-Sepharose. The purified protease showed one major active proteinase band on reverse zymography with 0.15% gelatin, corresponding to a molecular mass of 25.5 kDa, with maximum activity at pH 9.0. The purified trypsin-like enzyme preferentially hydrolyzed synthetic substrates with arginine residue at the P1 position. The K m values determined for three different substrates were 1.88 × 10–4, 1.28 × 10–4, and 1.40 × 10–4 M for H--benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide (S2222), dl-Ile-Pro-Arg-p-nitroanilide (S2288), and DL-Phe-Pip-Arg-p-nitroanilide (S2238), respectively. The enzyme was strongly inhibited by typical serine proteinase inhibitors such as SBTI (soybean trypsin inhibitor, K i = 0.19 nM) and BuXI (Bauhinia ungulata factor Xa inhibitor, K i = 0.48 nM), and less inhibited by LDTI (leech-derived tryptase inhibitor, K i = 1.5 nM) and its variants LDTI 2T and 5T (0.8 and 1.5 nM, respectively). The most effective inhibitor for this protease was r-aprotinin (r-BPTI) with a K i value of 39 pM. Synthetic serine protease inhibitors presented only weak inhibition, e.g., benzamidine with K i = 3.0 × 10–4 M and phenylmethylsulfonyl fluoride (PMSF) showed traces of inhibition. The purified trypsin-like enzyme also digested natural substrates such as fibrinogen and fibrin net. The protease showed higher activity against fibrinogen and fibrin than did bovine trypsin. These data suggest that the proteolytic enzyme of H. irritans irritans is more specific to proteins from blood than are the vertebrate digestive enzymes. This enzyme's characteristics may be an adaptation resulting from the feeding behavior of this hematophagous insect.  相似文献   

14.
The metabolic effects of ganglioside GM1 were found to be quite different in brain synaptosomes and phagocytic cells. Incubation of rat brain cortex synaptosomes with GM1 was shown to decrease the production of reactive oxygen species induced by Fe2+-H2O2 system and measured by chemiluminometric method in the presence of luminol. Gangliosides GM1, GD1a, and GT1b significantly diminished the induced accumulation of lipid peroxidation product in brain synaptosomes, but protein kinase inhibitor (polymyxin B) abolished this effect. Incubation with antioxidants or GM1 significantly diminished the increase of 45Ca2+ influx and oxidative inactivation of Na+,K+-ATPase in brain synaptosomes exposed to glutamate, the effect of GM1 was concentration-dependent in the range 10–11–10–8 M. But the incubation of human neutrophils and mouse peritoneal macrophages with 10–11–10–10 M GM1, on the contrary, increased several times the luminol-dependent chemiluminescence response of these cells to activation by low concentrations of 12-myristate-13-acetate phorbol ester. The opposite effects of GM1 in the nerve endings and phagocytic cells seem to be protective in both cases as the inhibition of reactive oxygen species production in the nerve cells may enhance their viability in damaged brain, while the intensification of their production in phagocytic cells may promote the resistance of organism to infection.  相似文献   

15.
Addition of luteinizing hormone releasing hormone (LHRH) in vitro (10–5–5×10–9 M) to murine pituitary membranes resulted in a dose-related decrease in Ca2+-ATPase activity within 15 min. Inhibitory effects of LHRH (10–7 M) occurred after 90 sec, and appeared maximal by 120 sec. Eadie-Hofstee analysis at 10–7 M LHRH, at varying [Ca2+]free, resulted in aK m=0.89±0.06 M and aV max=18.8±0.71 nmol/mg per 2 min, compared to aK m=0.69±0.06 M and aV max=32.8±1.21 nmol/mg per 2 min for controls. Pre-incubation for 5 min with LHRH antagonist (10–8 M) significantly attenuated (50%) the inhibitory effects of 10–7 M LHRH on pituitary Ca2+ ATPase activity with aK m=0.97±0.24 M and aV max=28.1±2.8 nmol/mg per 2 min. The addition of LHRH (10–7 M) to pituitary homogenates significantly increased luteinizing hormone (LH) release already at 10 and up to 40 sec compared to basal LH release. Systemic administration of 50 ng LHRH (i.p.), significantly (P<0.05) reduced pituitary Ca2+-ATPase after 30, 60 and 90 min, with a return to control levels by 120 min. Pituitary LH content was reduced slightly at 15 min, but was increased significantly at 90 and 120 min post-treatment. Plasma LH levels were elevated by 5 min, reached a peak by 15 min and returned to control within 60 min. The present findings indicate that LHRH receptor activation may influence cytosolic Ca2+ transport through effects on membrane Ca2+-ATPase activity. These actions may regulate LHRH-induced synthesis, storage and release of LH from pituitary gonadotropes.  相似文献   

16.
Summary The effect of ionizing irradiation on the physiological activity of cyclic adenosine monophosphate (cAMP) in smooth muscle preparations from frog lung was studied. cAMP, given as dibutyryl salt (dib-cAMP) inhibited the radiation induced contractions of the muscle in a manner similar to the action of theophylline. In vitro irradiation of dib-cAMP resulted in an alteration of the chemical structure of this substance, i.e., formation of monobutyryl-cAMP and further derivatives as well as a decomposition of the purine structure. There was also a loss of the relaxing activity of irradiated cAMP on the muscle tone of frog lung preparations. The physiologically measured inactivation of dib-cAMP was far more pronounced than the chemical alteration. An inhibitory effect of the reaction products is postulated.  相似文献   

17.
Summary The pH and serum dependence of the glutamine decomposition rate constant, Kgln, in Dulbecco's Modified Eagle's Medium, DMEM, was determined. The findings indicate that Kgln increases with increase in pH and fetal calf serum (FCS) concentration in DMEM. At a constant pH of 7.25, Kgln increases from 5.7×10–4 to 13.2×10–4 h–1 as FCS content of the medium increases from 0.0 to 10.0 (% v/v). Moreover, at a constant FCS of 10 (% v/v), Kgln increases from 11.5×10–4 to 33.6×10–4 h–1 as pH of the medium increases from 7.2 to 7.6.  相似文献   

18.
The plant growth retardant paclobutrazol, (PP333) (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol, inhibits specifically the three steps in the oxidation of the gibberellin-precursorent-kaurene toent-kaurenoic acid in a cell-free system fromCucurbita maxima endosperm. The KI50 for this inhibition is 2×10–8 M. The KI50 values for the separated2S, 3S, and2R, 3R enantiomers of paclobutrazol in this system are 2×10–8 M and 7×10–7 M, respectively. A cell-free preparation from immatureMalus pumila embryos convertsent-kaurene to gibberellin A9, whereas no conversion occurs in a similar preparation fromMalus endosperm. The conversion ofent-kaurene by the embryo preparation is inhibited by paclobutrazol with KI50 values for the2S,3S and2R,3R enantiomers of 2×10–8 M and 6×10–8 M, respectively.  相似文献   

19.
Trehalose-6-phosphate synthase, catalyzing the reaction between UDP-glucose and glucose 6-phosphate and forming trehalose 6-phosphate, was isolated and partially purified (30-fold) from the phototrophic, haloalkaliphilic bacteriumEctothiorhodospira halochloris. The activity is stabilized by 20mM MgCl2, 50mM NaCe and 2M glycine betaine. The molecular weight was 63000.The enriched enzyme had a MgCl2 optimum at 3–6mM, a pH optimum at 7.5 (in Tris-HCl buffer) and a temperature optimum at 50°C. The Km-values were 1.5×10–3M for UDP-glucose and 2×10–3M for glucose 6-phosphate. The enzyme showed a salinity dependence with optimal concentrations between 100 and 300mM salt. Higher concentrations of salt resulted in a decrease in activity. In the presence of inhibitory salt concentrations the compatible solute glycine betaine had a protective effect with a maximum between 0.5 and 2.0M.  相似文献   

20.
Nitrate reduction was studied in the dinoflagellatePeridinium cinctum collected from extensive algal blooms in Lake Kinneret (Israel).Among several methods tested for the preparation of cell free extracts, only the use of a ground-glass tissue culture homogenizer was found to be efficient. The assimilatory nitrate reductase ofP. cinctum was located in a particulate fraction. In this respect,P. cinctum did not behave like other eukaryotes, such as green algae, but as a prokaryote. Nitrite reductase activity was found in the soluble fraction.Nitrate reductase used NADH as a preferable electron donor; it reacted also with NADPH but only to give 16.5% of the NADH dependent rate. Methyl viologen and benzyl viologen could also serve as electron donors, with rates higher than the NADH dependent activity (3–6 times and 1.5–3 times, respectively). The Km of nitrate reductase for NADH was 2.8×10–4 M and for NO3-1.9×10–4 M. Flavins did not stimulate the activity, nor was ferricyanide able to activate it. Carboxylic anions stimulated nitrate reductase activity 3–4 fold, an effect which was not mimicked by other anions.Chlorate, azide and cyanide were competitive inhibitors ofP. cinctum, nitrate reductase withK i values of 1.79×10–3 M, 2.1×10–5 M and 8.9×10–6 M respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号