首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Broad-spectrum matrix metalloproteinase (MMP) inhibitors (MMPI) were unsuccessful in cancer clinical trials, partly due to side effects resulting from limited knowledge of the full repertoire of MMP substrates, termed the substrate degradome, and hence the in vivo functions of MMPs. To gain further insight into the degradome of MMP-14 (membrane type 1 MMP) an MMPI, prinomastat (drug code AG3340), was used to reduce proteolytic processing and ectodomain shedding in human MDA-MB-231 breast cancer cells transfected with MMP-14. We report a quantitative proteomic evaluation of the targets and effects of the inhibitor in this cell-based system. Proteins in cell-conditioned medium (the secretome) and membrane fractions with levels that were modulated by the MMPI were identified by isotope-coded affinity tag (ICAT) labeling and tandem mass spectrometry. Comparisons of the expression of MMP-14 with that of a vector control resulted in increased MMP-14/vector ICAT ratios for many proteins in conditioned medium, indicating MMP-14-mediated ectodomain shedding. Following MMPI treatment, the MMPI/vehicle ICAT ratio was reversed, suggesting that MMP-14-mediated shedding of these proteins was blocked by the inhibitor. The reduction in shedding or the release of substrates from pericellular sites in the presence of the MMPI was frequently accompanied by the accumulation of the protein in the plasma membrane, as indicated by high MMPI/vehicle ICAT ratios. Considered together, this is a strong predictor of biologically relevant substrates cleaved in the cellular context that led to the identification of many undescribed MMP-14 substrates, 20 of which we validated biochemically, including DJ-1, galectin-1, Hsp90alpha, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, and dickkopf-1. Other proteins with altered levels, such as Kunitz-type protease inhibitor 1 and beta-2-microglobulin, were not substrates in biochemical assays, suggesting an indirect affect of the MMPI, which might be important in drug development as biomarkers or, in preclinical phases, to predict systemic drug actions and adverse side effects. Hence, this approach describes the dynamic pattern of cell membrane ectodomain shedding and its perturbation upon metalloproteinase drug treatment.  相似文献   

2.
Membrane type-1 matrix metalloproteinase (MT1-MMP) is the prototypical member of a subgroup of membrane-anchored proteinases that belong to the matrix metalloproteinase family. Although synthesized as a zymogen, MT1-MMP plays an essential role in extracellular matrix remodeling after an undefined process that unmasks its catalytic domain. We now report the existence of a proprotein convertase-MT1-MMP axis that regulates the processing and functional activity of the metalloproteinase. Two sets of basic motifs in the propeptide region of MT1-MMP are identified that potentially can be recognized by the proprotein convertase family of subtilisin-like proteases. Processing of proMT1-MMP as well as the expression of its proteolytic activity were blocked by mutating these recognition motifs or by inhibiting the proprotein convertases furin and PC6 with the serpin-based inhibitor alpha(1) antitrypsin Portland. Furthermore, both furin-dependent and furin-independent MT1-MMP processing pathways are identified that require tethering of the metalloproteinase to the cell surface. These findings demonstrate the existence of a proprotein convertase-MT1-MMP axis that can regulate extracellular matrix remodeling.  相似文献   

3.
Thrombospondins are thought to function as inhibitors of angiogenesis. However, the mechanism(s) of this activity is not well understood. In this study, we have used the yeast two-hybrid system to identify proteins that interact with the thrombospondins 1 (TSP1) and 2 (TSP2) properdin-like type 1 repeats (TSR). One of the proteins identified that interacted with both TSR was matrix metalloproteinase 2 (MMP2). The isolated MMP2 cDNA clone encoded amino acid residues 237-633, which include the fibronectin-like gelatin binding region flanking the catalytic center and the carboxyl hemopexin-like region. Further testing of this clone demonstrated that the TSR interacted with the NH(2)-terminal region of the MMP2 that contains the catalytic domain. The protein interaction observed in yeast was further demonstrated by immunoprecipitation and Western blotting using purified intact TSP1, TSP2, MMP2, and MMP9. Although MMP2 interacted with TSP1 and TSP2 via its gelatin-binding domain or a closely mapping site, neither TSP1 nor TSP2 was degraded by MMP2 in vitro. Tissue culture and in vitro assays demonstrated that the presence of purified TSR and intact TSP1 resulted in inhibition of MMP activity. The ability of TSP1 to inhibit MMP3-dependent activation of pro-MMP9 and thrombin-induced activation of pro-MMP2 suggests that the TSPs may inhibit MMP activity by preventing activation of the MMP2 and MMP9 zymogens.  相似文献   

4.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is an integral membrane protein that participates in the processing and degradation of cell surface proteins and the extracellular matrix (ECM). This enzyme regulates ECM turnover in wound repair, promotes cell migration and activates other MMPs, such as MMP-2, which is involved in angiogenesis, cell migration and tumoral metastasis. An increase in pro-inflammatory cytokine expression, such as gamma interferon (IFN-gamma), has been associated with chronic wounds in inflammatory bowel diseases. However, the extent to which cytokines modulate MT1-MMP has not been totally defined. In this report, the effects of the bacterial lipopolysaccharide (LPS) and ECM-bound IFN-gamma on MT1-MMP expression and MMP-2 activity were evaluated by Western blot, RT-PCR and zymography in isolated intestinal epithelial and cultured HT-29 cells. In the presence of LPS, ECM-bound IFN-gamma, but not soluble IFN-gamma, reduced the enterocyte MT1-MMP protein expression. In addition, the active form of MMP-2 was also decreased in the presence of both LPS and IFN-gamma, indicating that lower MMP-2 activity accompanied the decrease in MT1-MMP expression. These results suggest the possibility that endotoxin and ECM-bound IFN-gamma may affect matrix remodeling by modulating matrix metalloproteinase in enterocytes during wound healing.  相似文献   

5.
A soluble, C-terminal truncated form of human membrane type 1 matrix metalloproteinase (MT1-MMP) containing the hemopexin-like domain was expressed in Pichia pastoris strain KM71. High levels of secreted protein were detected. Although the c-DNA for the proenzyme (Ala(21)-Glu(523) called DeltaTM-MT1-MMP) was cloned, almost only active MT1-MMP (Tyr(112)-Glu(523)) with identical N-terminus as described for the wild-type enzyme was isolated. This active enzyme was highly purified and characterized with respect to its biochemical properties. The recombinant protein showed high stability against autolysis and proteolysis by yeast proteases, although the calculated in vivo half-life is rather low. The biochemical properties of this new MT1-MMP species were compared with the well-characterized catalytic domain (Ile(114)-Ile(318)) of MT1-MMP. The novel form of MT1-MMP exhibited a higher stability against autolysis than the isolated catalytic domain (Ile(114)-Ile(318)).  相似文献   

6.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a collagenolytic enzyme that has been implicated in normal development and in pathological processes such as cancer metastasis. The activity of MT1-MMP is regulated extensively at the post-translational level, and the current data support the hypothesis that MT1-MMP activity is modulated by glycosylation. Enzymatic deglycosylation, site-directed mutagenesis, and lectin precipitation assays were used to demonstrate that MT1-MMP contains O-linked complex carbohydrates on the Thr(291), Thr(299), Thr(300), and/or Ser(301) residues in the proline-rich linker region. MT1-MMP glycoforms were detected in human cancer cell lines, suggesting that MT1-MMP activity may be regulated by differential glycosylation in vivo. Although the autolytic processing and interstitial collagenase activity of MT1-MMP were not impaired in glycosylation-deficient mutants, cell surface MT1-MMP-catalyzed activation of pro-matrix metalloproteinase-2 (proMMP-2) required proper glycosylation of MT1-MMP. The inability of carbohydrate-free MT1-MMP to activate proMMP-2 was not a result of defective MT1-MMP zymogen activation, aberrant protein stability, or inability of the mature enzyme to oligomerize. Rather, our data support a mechanism whereby glycosylation affects the recruitment of tissue inhibitor of metalloproteinases-2 (TIMP-2) to the cell surface, resulting in defective formation of the MT1-MMP/TIMP-2/proMMP-2 trimeric activation complex. These data provide evidence for an additional mechanism for post-translational control of MT1-MMP activity and suggest that glycosylation of MT1-MMP may regulate its substrate targeting.  相似文献   

7.
8.
Membrane type 1 matrix metalloproteinase (MT1-MMP) plays a critical role in cancer cell biology by proteolytically remodeling the extracellular matrix. Utilizing fluorescence resonance energy transfer (FRET) imaging, we have developed a novel biosensor, with its sensing element anchoring at the extracellular surface of cell membrane, to visualize MT1-MMP activity dynamically in live cells with subcellular resolution. Epidermal growth factor (EGF) induced significant FRET changes in cancer cells expressing MT1-MMP, but not in MT1-MMP-deficient cells. EGF-induced FRET changes in MT1-MMP-deficient cells could be restored after reconstituting with wild-type MT1-MMP, but not MMP-2, MMP-9, or inactive MT1-MMP mutants. Deletion of the transmembrane domain in the biosensor or treatment with tissue inhibitor of metalloproteinase-2, a cell-impermeable MT1-MMP inhibitor, abolished the EGF-induced FRET response, indicating that MT1-MMP acts at the cell surface to generate FRET changes. In response to EGF, active MT1-MMP was directed to the leading edge of migrating cells along micropatterned fibronectin stripes, in tandem with the local accumulation of the EGF receptor, via a process dependent upon an intact cytoskeletal network. Hence, the MT1-MMP biosensor provides a powerful tool for characterizing the molecular processes underlying the spatiotemporal regulation of this critical class of enzymes.  相似文献   

9.
10.
Betaglycan is a membrane-anchored proteoglycan that binds transforming growth factor-beta (TGF-beta) via its core protein. A soluble form of betaglycan can be released by proteolytic cleavage (also known as shedding) of the membrane-bound form, yielding soluble betaglycan. The mechanism leading to the generation of soluble betaglycan is poorly understood. Because the membrane and soluble forms of betaglycan have opposite effects regulating the availability of TGF-beta, it is important to characterize the shedding of betaglycan further. Here we present evidence showing that in certain cell types, pervanadate, a general tyrosine phosphatase inhibitor, induces the release of the previously described fragment that encompasses almost the entire extracellular domain of betaglycan (sBG-120). In addition, treatment with pervanadate unveils the existence of a novel 90-kDa fragment (sBG-90). Noticeably, the cleavage that generates sBG-90 is mediated by a tissue inhibitor of metalloprotease-2-sensitive protease. Overexpression of all membrane type matrix metalloproteases (MT-MMPs) described to date indicates that MT1-MMP and MT3-MMP are endowed with ability to generate sBG-90. Furthermore, the patterns of expression of different MT-MMPs in the cell lines used in this study suggest that MT1-MMP is the protease involved in the shedding of sBG-90. Overexpression of MT1-MMP in COS-1 cells, which do not express detectable levels of this metalloprotease, confirms the feasibility of this hypothesis. Unexpectedly, during the course of these experiments, we observed that MT2-MMP decreases the levels of MT1-MMP and betaglycan. Finally, binding competition experiments indicate that, similar to the wild type membrane betaglycan, sBG-90 binds the TGF-beta2 isoform with greater affinity than TGF-beta1, suggesting that once released, it could affect the cellular availability of TGF-beta.  相似文献   

11.
Restoration of correct neural activity following central nervous system (CNS) damage requires the replacement of degenerated axons with newly outgrowing, functional axons. Unfortunately, spontaneous regeneration is largely lacking in the adult mammalian CNS. In order to establish successful regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc‐dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model, we were able to show that broad‐spectrum MMP inhibition reduces axon outgrowth of mouse retinal ganglion cells (RGCs), implicating MMPs as beneficial factors in axonal regeneration. Additional studies, using more specific MMP inhibitors and MMP‐deficient mice, disclosed that both MMP‐2 and MT1‐MMP, but not MMP‐9, are involved in this process. Furthermore, administration of a novel antibody to MT1‐MMP that selectively blocks pro‐MMP‐2 activation revealed a functional co‐involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP‐2 and MT1‐MMP in RGC axons and glial cells. Finally, results from combined inhibition of MMP‐2 and β1‐integrin were suggestive for a functional interaction between these molecules. Overall, our data indicate MMP‐2 and MT1‐MMP as promising axonal outgrowth‐promoting molecules.

  相似文献   


12.
Membrane type 1 matrix metalloproteinase (MT1-MMP, MMP14) is an efficient extracellular matrix (ECM) degrading enzyme that plays important roles in tissue homeostasis and cell invasion. Like a number of type I membrane proteins, MT1-MMP can be internalized from the cell surface through early and recycling endosomes to late endosomes, and recycled to the plasma membrane. Late endosomes participate in the biogenesis of small (30-100 nm) vesicles, exosomes, which redirect plasma membrane proteins for extracellular secretion. We hypothesized that some of the endosomal MT1-MMP could be directed to exosomes for extracellular release. Using cultured human fibrosarcoma (HT-1080) and melanoma (G361) cells we provide evidence that both the full-length 60 kDa and the proteolytically processed 43 kDa forms of MT1-MMP are secreted in exosomes. The isolated exosomes were identified by their vesicular structure in electron microscopy and by exosomal marker proteins CD9 and tumor susceptibility gene (TSG101). Furthermore, exosomes contained beta1-integrin (CD29). The exosomes were able to activate pro-MMP-2 and degrade type 1 collagen and gelatin, suggesting that the exosomal MT1-MMP was functionally active. The targeting of MT1-MMP in exosomes represents a novel mechanism for cancer cells to secrete membrane type metalloproteolytic activity into the extracellular space.  相似文献   

13.
14.
Matrix metalloproteinases (MMPs) are multidomain zinc-dependent proteolytic enzymes that play pivotal roles in many normal and pathological processes. Some members of the MMP family are anchored to the plasma membrane via specialized domains and thus are perfectly suited for pericellular proteolysis. Membrane-anchoring also confers the membrane type-MMPs (MT-MMPs) a unique and complex array of regulatory processes that endow cells with the ability to control MT-MMP-dependent proteolytic activity independently of the levels of endogenous protease inhibitors. Emerging evidence indicates that mechanisms as diverse as autocatalytic processing, ectodomain shedding, homodimerization and internalization can all contribute to the modulation of MT-MMP activity on the cell surface. How these distinct processes interact to attain the optimal level of enzyme activity in a particular setting and the molecular signals that trigger them constitute a new paradigm in MMP regulation. This review will discuss the recent findings concerning these diverse regulatory mechanisms in the context of MT1-MMP (MMP-14).  相似文献   

15.
In the normal heart, cardiomyocytes are surrounded by extracellular matrix (ECM) and latent matrix metalloproteinases (MMPs), which are produced primarily by cardiac fibroblasts. An activator of latent MMPs might be induced by ischemic conditions or pressure-induced stretching. To test the hypothesis that an activator of latent MMP is induced in the ischemic heart during transformation of a compensatory hypertrophic response to a decompensatory failing response in cardiac fibroblast cells, we stretched the human cardiac fibroblasts at 25 cycles/min in serum-free or 5% serum culture condition. The membrane type (MT)-MMP activity in stretched cells was measured by zymography and immuno-blot analyses using MT-MMP-2 antibody. The MT-MMP activity was further characterized by transverse-urea gradient (TUG)-zymography. The results suggested that stretch induced a membrane MMP in the fibroblasts that was similar to the MT-MMP induced in ischemic heart. Furthermore, we observed that membrane MMP has distinct mobility in TUG-zymography. To localize the MT-MMP and tissue plasminogen activator (tPA) of latent MMPs, the membrane and cytosol were separated by a method employing a detergent and sedimentation. The MT-MMP and tPA activities of cytosol and membrane fractions were measured by gelatin- and plasminogen-zymography, respectively. Differential-display mRNA analysis was performed on control and stretched cells. In situ immuno-labelling was performed to localize the MT-MMP. The results indicate that induction of MT-MMP occurred in the membrane fractions. The secretion of tPA was elevated in the stretched cells. The MT-MMP activity was inhibited by prior incubation with an antibody generated to membrane MMP. The tPA activity was inhibited by using tPA antibody. These results suggest that, under stretched conditions, neutral transmembrane matrix proteinases are induced in the cardiac fibroblasts. This may lead to activation of adverse ECM remodeling, cardiac dilatation, and failure. J. Cell. Physiol. 176:374–382, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Membrane-type-1 matrix metalloproteinase (MT1-MMP) has transmembrane and cytoplasmic domains, which target it to invasive fronts. We analyzed the role of the cytoplasmic tail by expressing wild type MT1-MMP and three mutants with progressively truncated C termini in human Bowes melanoma cells. We examined gelatinase A activation and the localization and processing of recombinant proteins in stable cell clones using gelatin zymography, immunoblotting, and immunofluorescence. Cell invasion was analyzed in vitro by Matrigel invasion assays. Gelatinase A was activated in all cell clones. However, the localization of MT1-MMP to the leading edge of migrating cells and cell invasion through Matrigel were strongly enhanced only in cells expressing either wild type or truncated MT1-MMP lacking 6 C-terminal amino acid residues (Delta577). Truncations of 10 or 16 amino acid residues in the cytoplasmic domain (Delta567 and Delta573, respectively) disturbed MT1-MMP localization. The expression of wild type and Delta577 MT1-MMPs induced also their cleavage to 43-kDa cell surface forms and the release of soluble, approximately 20-kDa N-terminal fragments containing the catalytic center. A synthetic MMP inhibitor but not a gelatinase inhibitor prevented the processing, suggesting that autocatalytic cleavage occurs. Purified soluble MT1-MMP was also autoproteolytically processed to 43- and 20-kDa forms in vitro. Our results indicate that the cytoplasmic domain has an important role in cell invasion by controlling both the targeting and degradation/turnover of MT1-MMP.  相似文献   

17.
We have recently shown that stimulation of endothelial cells with vascular endothelial growth factor (VEGF) induces dissociation of caveolin-1 from the VEGFR-2 receptor, followed by Src family kinase-dependent tyrosine phosphorylation of the protein (Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., and Beliveau, R. (2003) Mol. Biol. Cell 14, 334-347). In this study, we provide evidence that the VEGF-dependent tyrosine phosphorylation of caveolin-1 induces interaction of the protein with the membrane-type 1 matrix metalloproteinase (MT1-MMP). This interaction requires the phosphorylation of caveolin-1 on tyrosine 14 by members of the Src family of protein kinases, such as Src and Fyn, because it is completely abolished by expression of a catalytically inactive Src mutant or by site-directed mutagenesis of tyrosine 14 of caveolin-1. Most interestingly, the association of MT1-MMP with phosphorylated caveolin-1 induced the recruitment of Src and a concomitant inhibition of the kinase activity of the enzyme, suggesting that this complex may be involved in the negative regulation of Src activity. The association of MT1-MMP with phosphorylated caveolin-1 occurs in caveolae membranes and involves the cytoplasmic domain of MT1-MMP because it was markedly reduced by mutation of Cys574 and Val582 residues of the cytoplasmic tail of the enzyme. Most interestingly, the reduction of the interaction between MT1-MMP and caveolin-1 by using these mutants also decreases MT1-MMP-dependent cell locomotion. Overall these results indicate that MT1-MMP associates with tyrosine-phosphorylated caveolin-1 and that this complex may play an important role in MT1-MMP regulation and function.  相似文献   

18.
Membrane-type I matrix metalloproteinases (MT1-MMP) is an enzyme critical to the remodeling and homeostasis of extracellular matrix, and when over expressed it contributes to metastasis and cancer cell progression. Because of its role and implication as a biomarker that is upregulated in various cancers, MT1-MMP has become an attractive target for drug discovery. A small pilot library of peptidomimetics containing a phosphoramidate core as a zinc-binding group was synthesized and tested for inhibitory potency against MT1-MMP. From this library, a novel two residue peptidomimetic scaffold was identified that confers potency against MT1-MMP at submicromolar concentrations. The results of this study confirm that for this scaffold, valine is favored as a P1 residue and leucine in the P1′ position. Furthermore, steric tolerance was observed for the N-terminus, thus implicating that a second-generation library could be constructed to extend the scaffold to P2 without concomitant loss of affinity within the MT1-MMP catalytic domain.  相似文献   

19.
Cellular disintegrin and metalloproteinases (ADAMs) are a family of genes with a sequence similar to the snake venom metalloproteinases and disintegrins. ADAMTS-1 is a unique ADAM family protein with respect to the presence of thrombospondin type I motifs and the capacity to bind to the extracellular matrix. Because ADAMTS-1 has a potential zinc-binding motif in the metalloproteinase domain, we examined in this study whether ADAMTS-1 is an active metalloproteinase by means of the proteinase trapping mechanism of alpha2-macroglobulin. We found that the soluble type of ADAMTS-1 protein is able to form a covalent-binding complex with alpha2-macroglobulin. Furthermore, the point mutation within the zinc-binding motif of ADAMTS-1 protein eliminates its capacity to bind to alpha2-macroglobulin. These data demonstrate that the metalloproteinase domain of ADAMTS-1 is catalytically active. In addition, we showed that the removal of the pro-domain from the ADAMTS-1 precursor is impaired in the furin-deficient cell line, LoVo, and that the processing ability of the cells is restored by the co-expression of the furin cDNA. These data provide evidence that the ADAMTS-1 precursor is processed in vivo by furin endopeptidase in the secretory pathway. Consequently, ADAMTS-1 is an active metalloprotease that is associated with the extracellular matrix. This study strongly suggests that ADAMTS-1 may play a role in the inflammatory process through its protease activity.  相似文献   

20.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a membrane-bound proteinase and a cell-surface receptor and activator of gelatinase A in normal and neoplastic cells. We have expressed and purified a soluble deletion mutant of MT1-MMP lacking the transmembrane and cytoplasmic domains and an inactive mutant of the soluble MT1-MMP, where the active-site glutamic acid(240) was substituted by alanine (E240A). A baculovirus transfer vector coding for amino acids 21-539 of MT1-MMP (DeltaTM) and a similar vector coding for the mutation (E240ADeltaTM) were constructed for expression in insect cells. Both DeltaTM and E240ADeltaTM were secreted to the culture medium of infected High Five insect cells. They were then purified by cation-exchange followed by gel-filtration chromatography. DeltaTM was able to cleave denatured type I collagen and fibronectin and activate MMP-2/gelatinase-A, while E240ADeltaTM had only low proteolytic activity against denatured collagen I. The current expression and purification protocol should prove useful for the production of large amounts of enzymatically active soluble MT1-MMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号