首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guanine nucleotide exchange factors carrying a Sec7 domain (ArfGEFs) activate the small GTP-binding protein Arf, a major regulator of membrane remodeling and protein trafficking in eukaryotic cells. Only two of the seven subfamilies of ArfGEFs (GBF and BIG) are found in all eukaryotes. In addition to the Sec7 domain, which catalyzes GDP/GTP exchange on Arf, the GBF and BIG ArfGEFs have five common homology domains. Very little is known about the functions of these noncatalytic domains, but it is likely that they serve to integrate upstream signals that define the conditions of Arf activation. Here we describe interactions between two conserved domains upstream of the Sec7 domain (DCB and HUS) that determine the architecture of the N-terminal regions of the GBF and BIG ArfGEFs using a combination of biochemical, yeast two-hybrid, and cellular assays. Our data demonstrate a strong interaction between DCB domains within GBF1, BIG1, and BIG2 to maintain homodimers and an interaction between DCB and HUS domains within each homodimer. The DCB/HUS interaction is mediated by the HUS box, the most conserved motif in large ArfGEFs after the Sec7 domain. In support of the in vitro data, we show that both the DCB and the HUS domains are necessary for GBF1 dimerization in mammalian cells and that the DCB domain is essential for yeast viability. We propose that the dimeric DCB-HUS structural unit exists in all members of the GBF and BIG ArfGEF groups and in the related Mon2p family and probably serves an important regulatory role in Arf activation.  相似文献   

2.
《FEBS letters》2014,588(24):4799-4806
Golgi Arf1-guanine nucleotide exchange factors (GEFs) belong to two subfamilies: GBF/Gea and BIG/Sec7. Both are conserved across eukaryotes, but the physiological role of each is not well understood. Aspergillus nidulans has a single member of the early Golgi GBF/Gea-subfamily, geaA, and the late Golgi BIG/Sec7-subfamily, hypB. Both geaA and hypB are essential. hypB5 conditionally blocks secretion. We sought extragenic hypB5 suppressors and obtained geaA1. geaA1 results in Tyr1022Cys within a conserved GBF/Gea-specific S(Y/W/F)(L/I) motif in GeaA. This mutation alters GeaA localization. Remarkably, geaA1 suppresses hypBΔ, indicating that a single mutant Golgi Arf1-GEF suffices for growth.  相似文献   

3.
The small G protein Arf1 regulates Golgi traffic and is activated by two related types of guanine nucleotide exchange factor (GEF). GBF1 acts at the cis-Golgi, whereas BIG1 and its close paralog BIG2 act at the trans-Golgi. Peripheral membrane proteins such as these GEFs are often recruited to membranes by small G proteins, but the basis for specific recruitment of Arf GEFs, and hence Arfs, to Golgi membranes is not understood. In this paper, we report a liposome-based affinity purification method to identify effectors for small G proteins of the Arf family. We validate this with the Drosophila melanogaster Arf1 orthologue (Arf79F) and the related class II Arf (Arf102F), which showed a similar pattern of effector binding. Applying the method to the Arf-like G protein Arl1, we found that it binds directly to Sec71, the Drosophila ortholog of BIG1 and BIG2, via an N-terminal region. We show that in mammalian cells, Arl1 is necessary for Golgi recruitment of BIG1 and BIG2 but not GBF1. Thus, Arl1 acts to direct a trans-Golgi-specific Arf1 GEF, and hence active Arf1, to the trans side of the Golgi.  相似文献   

4.
Arf GTPases control vesicle formation from different intracellular membranes and are regulated by Arf guanine nucleotide exchange factors (GEFs). Outside of their conserved catalytic domains, known as Sec7 domains, little is known about Arf GEFs. Rsp5 is a yeast ubiquitin ligase that regulates numerous membrane trafficking events and carries a C2 domain that is specifically required for trans-Golgi network to vacuole transport. In a screen for proteins that interact with the Rsp5 C2 domain we identified Sec7, the GEF that acts on Golgi-associated Arfs. The Rsp5-Sec7 interaction is direct, occurs in vivo, and is conserved among mammalian Rsp5 and Sec7 homologues. A 50-amino acid region near the Sec7 C terminus is required for Rsp5 binding and for normal Sec7 localization. Binding of Sec7 to Rsp5 is dependent on the presence of the phosphoinositide 3-kinase Vps34, suggesting that phosphatidylinositol 3-phosphate (PI(3)P) plays a role in regulating this interaction. Overexpression of Sec7 significantly suppresses the growth and sorting defects of an rsp5 C2 domain point mutant. These observations identify a new functional region within the Sec7/BIG family of Arf GEFs that is required for trans-Golgi network localization.  相似文献   

5.
The protein Mon2 is distantly related to the guanine nucleotide exchange factors (GEFs) that activate Arf1 on Golgi membranes. However, unlike these "large" Arf GEFs, Mon2 lacks the Sec7 domain that catalyzes nucleotide exchange on Arf1. Here we report that yeast Mon2 shares extensive homology with the noncatalytic parts of both the BIG and Golgi brefeldin A resistance factor subfamilies of Arf GEFs and is located to the trans-Golgi. Moreover, we find that Mon2 forms a complex with Dop1, a large cytoplasmic protein conserved in evolution from humans to protozoa. Deletion of Mon2 results in mislocalization of Dop1 from the Golgi and defects in cycling between endosomes and the Golgi. However, unlike Mon2, Dop1 is essential for yeast viability. A conditional allele of Dop1 shows that loss of Dop1 activity not only affects endosome to Golgi transport but also causes a severe perturbation of the organization of the endoplasmic reticulum. Thus, it appears that Dop1 plays a widespread role in membrane organization, and Mon2 acts as a scaffold to recruit the Golgi-localized pool of Dop1.  相似文献   

6.
The components and subprocesses underlying the formation of COPI-coated vesicles at the Golgi are well understood. The coating cascade is initiated after the small GTPase Arf1 is activated by the Sec7 domain–containing guanine nucleotide exchange factor GBF1 (Golgi brefeldin A resistant guanine nucleotide exchange factor 1). This causes a conformational shift within Arf1 that facilitates stable association of Arf1 with the membrane, a process required for subsequent recruitment of the COPI coat. Although we have atomic-level knowledge of Arf1 activation by Sec7 domain–containing GEFs, our understanding of the biophysical processes regulating Arf1 and GBF1 dynamics is limited. We used fluorescence recovery after photobleaching data and kinetic Monte Carlo simulation to assess the behavior of Arf1 and GBF1 during COPI vesicle formation in live cells. Our analyses suggest that Arf1 and GBF1 associate with Golgi membranes independently, with an excess of GBF1 relative to Arf1. Furthermore, the GBF1-mediated Arf1 activation is much faster than GBF1 cycling on/off the membrane, suggesting that GBF1 is regulated by processes other than its interactions Arf1. Interestingly, modeling the behavior of the catalytically inactive GBF1/E794K mutant stabilized on the membrane is inconsistent with the formation of a stable complex between it and an endogenous Arf1 and suggests that GBF1/E794K is stabilized on the membrane independently of complex formation.  相似文献   

7.
Brefeldin A‐mediated inhibition of ADP ribosylation factor (Arf) GTPases and their guanine nucleotide exchange factors, Arf‐GEFs, has been a cornerstone of membrane trafficking research for many years. Brefeldin A (BFA) is relatively non‐selective inhibiting at least three targets in human cells, Golgi brefeldin A resistance factor 1 (GBF1), brefeldin A inhibited guanine nucleotide exchange factor 1 (BIG1) and brefeldin A inhibited guanine nucleotide exchange factor 2 (BIG2). Here, we show that the previously described compound Exo2 acts through inhibition of Arf‐GEF function, but causes other phenotypic changes that are not GBF1 related. We describe the engineering of Exo2 to produce LG186, a more selective, reversible inhibitor of Arf‐GEF function. Using multiple‐cell‐based assays and GBF1 mutants, our data are most consistent with LG186 acting by selective inhibition of GBF1. Unlike other Arf‐GEF and reported GBF1 inhibitors including BFA, Exo2 and Golgicide A, LG186 induces disassembly of the Golgi stack in both human and canine cells.  相似文献   

8.
Arf GTPases regulate membrane trafficking and actin dynamics. Grp1, ARNO, and Cytohesin-1 comprise a family of phosphoinositide-dependent Arf GTPase exchange factors with a Sec7-pleckstrin homology (PH) domain tandem. Here, we report that the exchange activity of the Sec7 domain is potently autoinhibited by conserved elements proximal to the PH domain. The crystal structure of the Grp1 Sec7-PH tandem reveals a pseudosubstrate mechanism of autoinhibition in which the linker region between domains and a C-terminal amphipathic helix physically block the docking sites for the switch regions of Arf GTPases. Mutations within either element result in partial or complete activation. Critical determinants of autoinhibition also contribute to insulin-stimulated plasma membrane recruitment. Autoinhibition can be largely reversed by binding of active Arf6 to Grp1 and by phosphorylation of tandem PKC sites in Cytohesin-1. These observations suggest that Grp1 family GEFs are autoregulated by mechanisms that depend on plasma membrane recruitment for activation.  相似文献   

9.
The ADP‐ribosylation factor (Arf) small G proteins act as molecular switches to coordinate multiple downstream pathways that regulate membrane dynamics. Their activation is spatially and temporally controlled by the guanine nucleotide exchange factors (GEFs). Members of the evolutionarily conserved GBF/Gea family of Arf GEFs are well known for their roles in formation of coat protein complex I (COPI) vesicles, essential for maintaining the structure and function of the Golgi apparatus. However, studies over the past 10 years have found new functions for these GEFs, along with their substrate Arf1, in lipid droplet metabolism, clathrin‐independent endocytosis, signalling at the plasma membrane, mitochondrial dynamics and transport along microtubules. Here, we describe these different functions, focussing in particular on the emerging theme of GFB1 and Arf1 regulation of organelle movement on microtubules.  相似文献   

10.
The Sec7 domain guanine nucleotide exchange factors (GEFs) for the GTPase ARF are highly conserved regulators of membrane dynamics and protein trafficking. The interactions of large ARF GEFs with cellular membranes for localization and/or activation are likely to participate in regulated recruitment of ARF and effectors. However, these interactions remain largely unknown. Here we characterize Gmh1p, the first Golgi transmembrane-domain partner of any of the high-molecular-weight ARF-GEFs. Gmh1p is an evolutionarily conserved protein. We demonstrate molecular interaction between the yeast Gmh1p and the large ARF-GEFs Gea1p and Gea2p. This interaction involves a domain of Gea1p and Gea2p that is conserved in the eukaryotic orthologues of the Gea proteins. A single mutation in a conserved amino acid residue of this domain is sufficient to abrogate the interaction, whereas the overexpression of Gmh1p can compensate in vivo defects caused by mutations in this domain. We show that Gmh1p is an integral membrane protein that localizes to the early Golgi in yeast and in human HeLa cells and cycles through the ER. Hence, we propose that Gmh1p acts as a positive Golgi-membrane partner for Gea function. These results are of general interest given the evolutionary conservation of both ARF-GEFs and the Gmh proteins.  相似文献   

11.
Infection of cells with poliovirus induces a massive intracellular membrane reorganization to form vesicle-like structures where viral RNA replication occurs. The mechanism of membrane remodeling remains unknown, although some observations have implicated components of the cellular secretory and/or autophagy pathways. Recently, we showed that some members of the Arf family of small GTPases, which control secretory trafficking, became membrane-bound after the synthesis of poliovirus proteins in vitro and associated with newly formed membranous RNA replication complexes in infected cells. The recruitment of Arfs to specific target membranes is mediated by a group of guanine nucleotide exchange factors (GEFs) that recycle Arf from its inactive, GDP-bound state to an active GTP-bound form. Here we show that two different viral proteins independently recruit different Arf GEFs (GBF1 and BIG1/2) to the new structures that support virus replication. Intracellular Arf-GTP levels increase approximately 4-fold during poliovirus infection. The requirement for these GEFs explains the sensitivity of virus growth to brefeldin A, which can be rescued by the overexpression of GBF1. The recruitment of Arf to membranes via specific GEFs by poliovirus proteins provides an important clue toward identifying cellular pathways utilized by the virus to form its membranous replication complex.  相似文献   

12.
The Arf1 exchange factor GBF1 (Golgi Brefeldin A resistance factor 1) and its effector COPI are required for delivery of ATGL (adipose triglyceride lipase) to lipid droplets (LDs). Using yeast two hybrid, co-immunoprecipitation in mammalian cells and direct protein binding approaches, we report here that GBF1 and ATGL interact directly and in cells, through multiple contact sites on each protein. The C-terminal region of ATGL interacts with N-terminal domains of GBF1, including the catalytic Sec7 domain, but not with full-length GBF1 or its entire N-terminus. The N-terminal lipase domain of ATGL (called the patatin domain) interacts with two C-terminal domains of GBF1, HDS (Homology downstream of Sec7) 1 and HDS2. These two domains of GBF1 localize to lipid droplets when expressed alone in cells, but not to the Golgi, unlike the full-length GBF1 protein, which localizes to both. We suggest that interaction of GBF1 with ATGL may be involved in the membrane trafficking pathway mediated by GBF1, Arf1 and COPI that contributes to the localization of ATGL to lipid droplets.  相似文献   

13.
ADP-ribosylation factors (ARFs) and their activating guanine nucleotide exchange factors (GEFs) play key roles in membrane traffic and signaling. All ARF GEFs share a ~200-residue Sec7 domain (Sec7d) that alone catalyzes the GDP to GTP exchange that activates ARF. We determined the crystal structure of human BIG2 Sec7d. A C-terminal loop immediately following helix J (loop>J) was predicted to form contacts with helix H and the switch I region of the cognate ARF, suggesting that loop>J may participate in the catalytic reaction. Indeed, we identified multiple alanine substitutions within loop>J of the full length and/or Sec7d of two large brefeldin A-sensitive GEFs (GBF1 and BIG2) and one small brefeldin A-resistant GEF (ARNO) that abrogated binding of ARF and a single alanine substitution that allowed ARF binding but inhibited GDP to GTP exchange. Loop>J sequences are highly conserved, suggesting that loop>J plays a crucial role in the catalytic activity of all ARF GEFs. Using GEF mutants unable to bind ARF, we showed that GEFs associate with membranes independently of ARF and catalyze ARF activation in vivo only when membrane-associated. Our structural, cell biological, and biochemical findings identify loop>J as a key regulatory motif essential for ARF binding and GDP to GTP exchange by GEFs and provide evidence for the requirement of membrane association during GEF activity.  相似文献   

14.
Guanine nucleotide exchange factors (GEFs), which activate small GTP-binding proteins (SMG) by stimulating their GDP/GTP exchange, are emerging as candidate targets for the inhibition of cellular pathways involved in diseases. However, their specific inhibition by competitive inhibitors is challenging, because GEF and SMG families comprise highly similar members. Nature shows us an alternative strategy called interfacial inhibition, exemplified by Brefeldin A (BFA). BFA inhibits the activation of Arf1 by its GEFs in vivo by stabilizing an abortive complex between Arf-GDP and the catalytic Sec7 domain of some of its GEFs. Here we characterize the specificity of BFA toward wild-type (ARNO and BIG1) and mutant Sec7 domains and toward class I, II, and III Arfs. We find that BFA sensitivity of the exchange reaction depends on the nature of both the Sec7 domain and the Arf protein. A single Phe/Tyr substitution is sufficient to achieve BFA sensitivity of the Sec7 domain, which is supported by our characterization of brefeldin C (BFC), a BFA analog that cannot interact with the Tyr residue, and by free energy computations. We further show that Arf1 and Arf5, but not Arf6, are BFA-sensitive, despite their having every BFA-interacting residue in common. Analysis of Arf6 mutants points to the dynamics of the interswitch, which is involved in membrane-to-nucleotide signal propagation, as contributing to, although not sufficient for, BFA sensitivity. Altogether, our results reveal the Tyr/Phe substitution as a novel tool for monitoring BFA sensitivity of cellular ArfGEFs and document the exquisite and dual specificity that can be achieved by an interfacial inhibitor.  相似文献   

15.
S Jones  G Jedd  R A Kahn  A Franzusoff  F Bartolini  N Segev 《Genetics》1999,152(4):1543-1556
Two families of GTPases, Arfs and Ypt/rabs, are key regulators of vesicular transport. While Arf proteins are implicated in vesicle budding from the donor compartment, Ypt/rab proteins are involved in the targeting of vesicles to the acceptor compartment. Recently, we have shown a role for Ypt31/32p in exit from the yeast trans-Golgi, suggesting a possible function for Ypt/rab proteins in vesicle budding as well. Here we report the identification of a new member of the Sec7-domain family, SYT1, as a high-copy suppressor of a ypt31/32 mutation. Several proteins that belong to the Sec7-domain family, including the yeast Gea1p, have recently been shown to stimulate nucleotide exchange by Arf GTPases. Nucleotide exchange by Arf GTPases, the switch from the GDP- to the GTP-bound form, is thought to be crucial for their function. Sec7p itself has an important role in the yeast secretory pathway. However, its mechanism of action is not yet understood. We show that all members of the Sec7-domain family exhibit distinct genetic interactions with the YPT genes. Biochemical assays demonstrate that, although the homology between the members of the Sec7-domain family is relatively low (20-35%) and limited to a small domain, they all can act as guanine nucleotide exchange factors (GEFs) for Arf proteins, but not for Ypt GTPases. The Sec7-domain of Sec7p is sufficient for this activity. Interestingly, the Sec7 domain activity is inhibited by brefeldin A (BFA), a fungal metabolite that inhibits some of the Arf-GEFs, indicating that this domain is a target for BFA. These results demonstrate that the ability to act as Arf-GEFs is a general property of all Sec7-domain proteins in yeast. The genetic interactions observed between Arf GEFs and Ypt GTPases suggest the existence of a Ypt-Arf GTPase cascade in the secretory pathway.  相似文献   

16.
The ADP ribosylation factors (Arfs) are a family of small, ubiquitously expressed and evolutionarily conserved guanosine triphosphatases that are key regulators of vesicular transport in eukaryotic cells (D'Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006;7:347-358). Although Arfs are best known for their role in the nucleation of coat protein assembly at a variety of intracellular locations, it is increasingly apparent that they are also integral components in a number of important signaling pathways that are regulated by extracellular cues. The activation of Arfs is catalyzed by a family of guanine nucleotide exchange factors (GEFs), referred to as the Sec7 family, based on homology of their catalytic domains to the yeast Arf GEF, sec7p. While there are only six mammalian Arfs, the human genome encodes 15 Sec7 family members, which can be divided into five classes based on related domain organization. Some of this diversity arises from the tissue-specific expression of certain isoforms, but all mammalian cells appear to express at least six Arf GEFs, suggesting that Arf activation is under extensive regulatory control. Here we review recent progress in our understanding of the structure, localization and biology of the different classes of Arf GEFs.  相似文献   

17.

Background

Transport of molecules from one subcellular compartment to another involves the recruitment of cytosolic coat protein complexes to a donor membrane to concentrate cargo, deform the membrane and ultimately to form an independent carrier. Small-GTP-binding proteins of the Arf family are central to many membrane trafficking events. Arfs are activated by guanine nucleotide exchange factors (GEFs) which results in their recruitment to membranes and subsequent engagement with Arf-effectors, many of which are coat proteins. Among the human BFA-sensitive large Arf-GEFs, the function of the two closely related BIG1 and BIG2 is still not clear, and recent studies have raised the question of functional redundancy between the two proteins.

Methodology/Principal Findings

Here we have used small-interfering RNA on human cells and a combination of fixed and live-cell imaging to investigate the differential functions of BIG1 and BIG2 in endomembrane organization and function. Importantly, in this direct comparative study, we show discrete functions for BIG1 and BIG2. Our results show that depletion of BIG2 but not of BIG1 induces a tubulation of the recycling endosomal compartment, consistent with a specific role for BIG2 here. In contrast, suppression of BIG1 induces the formation of Golgi mini-stacks still polarized and functional in terms of cargo export.

Conclusions

A key finding from our work is that suppression of BIG1 expression results in a fragmentation of the Golgi apparatus. Our data indicate that the human BFA-sensitive large Arf-GEFs have non-redundant functions in cell organization and membrane trafficking. BIG1 is required to maintain the normal morphology of the Golgi; BIG2 is important for endosomal compartment integrity and cannot replace the function of BIG1 in Golgi organization.  相似文献   

18.
Arf GTPases are key regulators of both retrograde and anterograde traffic at the Golgi complex. The Golgi-localized Arf activators, Arf-GEFs (guanine exchange factor) of the BIG/GBF family, are poorly understood in terms of both their regulatory and localization mechanisms. We have performed a detailed kinetic characterization of a functional Golgi Arf-GEF, the trans-Golgi network (TGN)-localized Sec7 protein from yeast. We demonstrate that Sec7 is regulated by both autoinhibition and positive feedback. We show that positive feedback arises through the stable recruitment of Sec7 to membranes via its HDS1 domain by interaction with its product, activated Arf1. This interaction mediates localization of Sec7 to the TGN, because deletion of the HDS1 domain or mutation of the HDS1 domain in combination with deletion of Arf1 significantly increases cytoplasmic localization of Sec7. Our results lead us to propose a model in which Arf-GEF recruitment is linked to Golgi maturation via Arf1 activation.  相似文献   

19.
The TRAPP complexes are multimeric guanine exchange factors (GEFs) for the Rab GTPase Ypt1p. The three complexes (TRAPPI, TRAPPII, and TRAPPIII) share a core of common subunits required for GEF activity, as well as unique subunits (Trs130p, Trs120p, Trs85p, and Trs65p) that redirect the GEF from the endoplasmic reticulum-Golgi pathway to different cellular locations where TRAPP mediates distinct membrane trafficking events. Roles for three of the four unique TRAPP subunits have been described before; however, the role of the TRAPPII-specific subunit Trs65p has remained elusive. Here we demonstrate that Trs65p directly binds to the C-terminus of the Arf1p exchange factor Gea2p and provide in vivo evidence that this interaction is physiologically relevant. Gea2p and TRAPPII also bind to the yeast orthologue of the γ subunit of the COPI coat complex (Sec21p), a known Arf1p effector. These and previous findings reveal that TRAPPII is part of an Arf1p GEF-effector loop that appears to play a role in recruiting or stabilizing TRAPPII to membranes. In support of this proposal, we show that TRAPPII is more soluble in an arf1Δ mutant.  相似文献   

20.
Small GTPases of the Arf family, by cycling between GDP-bound inactive and GTP-bound active states, play a crucial role not only in the regulation of membrane traffic and dynamics but also in rearrangement of actin cytoskeleton. The exchange of GDP for GTP on Arf is catalyzed by a family of guanine nucleotide-exchange factors (GEFs) containing a Sec7 domain. The Sec7 domain is a target of brefeldin A, which inhibits various trafficking processes and induces organelle disintegration. During the past few years, significant progress has been made in elucidating the structure and catalytic mechanism of the Sec7 domains and physiological functions of the Sec7 domain-containing Arf-GEFs. Here we review the structures and functions of Arf-GEFs by focusing on the regulation of membrane traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号