首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background  

Discovering novel disease genes is still challenging for diseases for which no prior knowledge - such as known disease genes or disease-related pathways - is available. Performing genetic studies frequently results in large lists of candidate genes of which only few can be followed up for further investigation. We have recently developed a computational method for constitutional genetic disorders that identifies the most promising candidate genes by replacing prior knowledge by experimental data of differential gene expression between affected and healthy individuals.  相似文献   

3.

Background  

Lactobacilli can utilize a variety of carbohydrates which reflects the nutrient availability in their respective environments. A common lactobacilli in the human gastrointestinal tract, Lactobacillus gasseri, was selected for further study. The currently available annotation of the L. gasseri ATCC 33323 genome describes numerous putative genes involved in carbohydrate utilization, yet the specific functions of many of these genes remain unknown.  相似文献   

4.

Background  

Microarray techniques survey gene expressions on a global scale. Extensive biomedical studies have been designed to discover subsets of genes that are associated with survival risks for diseases such as lymphoma and construct predictive models using those selected genes. In this article, we investigate simultaneous estimation and gene selection with right censored survival data and high dimensional gene expression measurements.  相似文献   

5.

Background  

Type 1 diabetes mellitus (T1DM) is a autoimmune disease caused by a long-term negative balance between immune-mediated beta-cell damage and beta-cell repair/regeneration. Following immune-mediated damage the beta-cell fate depends on several genes up- or down-regulated in parallel and/or sequentially. Based on the information obtained by the analysis of several microarray experiments of beta-cells exposed to pro-apoptotic conditions (e.g. double stranded RNA (dsRNA) and cytokines), we have developed a spotted rat oligonucleotide microarray, the APOCHIP, containing 60-mer probes for 574 genes selected for the study of beta-cell apoptosis.  相似文献   

6.
7.

Background  

Genome-wide association studies (GWAS) have found hundreds of single nucleotide polymorphisms (SNPs) associated with common diseases. However, it is largely unknown what genes linked with the SNPs actually implicate disease causality. A definitive proof for disease causality can be demonstration of disease-like phenotypes through genetic perturbation of the genes or alleles, which is obviously a daunting task for complex diseases where only mammalian models can be used.  相似文献   

8.

Background  

Selection of influential genes with microarray data often faces the difficulties of a large number of genes and a relatively small group of subjects. In addition to the curse of dimensionality, many gene selection methods weight the contribution from each individual subject equally. This equal-contribution assumption cannot account for the possible dependence among subjects who associate similarly to the disease, and may restrict the selection of influential genes.  相似文献   

9.

Background  

Vibrio cholerae is the causative agent of cholera. Extensive studies reveal that complicated regulatory cascades regulate expression of virulence genes, the products of which are required for V. cholerae to colonize and cause disease. In this study, we investigated the expression of the key virulence regulator ToxR under different conditions.  相似文献   

10.

Background  

In silico candidate gene prioritisation (CGP) aids the discovery of gene functions by ranking genes according to an objective relevance score. While several CGP methods have been described for identifying human disease genes, corresponding methods for prokaryotic gene function discovery are lacking. Here we present two prokaryotic CGP methods, based on phylogenetic profiles, to assist with this task.  相似文献   

11.

Background  

The accumulation of high-throughput data greatly promotes computational investigation of gene function in the context of complex biological systems. However, a biological function is not simply controlled by an individual gene since genes function in a cooperative manner to achieve biological processes. In the study of human diseases, rather than to discover disease related genes, identifying disease associated pathways and modules becomes an essential problem in the field of systems biology.  相似文献   

12.

Background  

Variation in gene expression is extensive among tissues, individuals, strains, populations and species. The interactions among these sources of variation are relevant for physiological studies such as disease or toxic stress; for example, it is common for pathologies such as cancer, heart failure and metabolic disease to be associated with changes in tissue-specific gene expression or changes in metabolic gene expression. But how conserved these differences are among outbred individuals and among populations has not been well documented. To address this we examined the expression of a selected suite of 192 metabolic genes in brain, heart and liver in three populations of the teleost fish Fundulus heteroclitus using a highly replicated experimental design.  相似文献   

13.

Background  

Gene expression microarray is a powerful technology for genetic profiling diseases and their associated treatments. Such a process involves a key step of biomarker identification, which are expected to be closely related to the disease. A most important task of these identified genes is that they can be used to construct a classifier which can effectively diagnose disease and even recognize the disease subtypes. Binary classification, for example, diseased or healthy, in microarray data analysis has been successful, while multi-class classification, such as cancer subtyping, remains challenging.  相似文献   

14.
15.

Background  

The number of genes declared differentially expressed is a random variable and its variability can be assessed by resampling techniques. Another important stability indicator is the frequency with which a given gene is selected across subsamples. We have conducted studies to assess stability and some other properties of several gene selection procedures with biological and simulated data.  相似文献   

16.

Background  

Haploinsufficient (HI) genes are those for which a reduction in copy number in a diploid from two to one results in significantly reduced fitness. Haploinsufficiency is increasingly implicated in human disease, and so predicting this phenotype could provide insights into the genetic mechanisms behind many human diseases, including some cancers.  相似文献   

17.

Background  

Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning.  相似文献   

18.

Background  

Once specific genes are identified through high throughput genomics technologies there is a need to sort the final gene list to a manageable size for validation studies. The triaging and sorting of genes often relies on the use of supplemental information related to gene structure, metabolic pathways, and chromosomal location. Yet in disease states where the genes may not have identifiable structural elements, poorly defined metabolic pathways, or limited chromosomal data, flexible systems for obtaining additional data are necessary. In these situations having a tool for searching the biomedical literature using the list of identified genes while simultaneously defining additional search terms would be useful.  相似文献   

19.

Background  

Many commercial banana varieties lack sources of resistance to pests and diseases, as a consequence of sterility and narrow genetic background. Fertile wild relatives, by contrast, possess greater variability and represent potential sources of disease resistance genes (R-genes). The largest known family of plant R-genes encode proteins with nucleotide-binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. Conserved motifs in such genes in diverse plant species offer a means for isolation of candidate genes in banana which may be involved in plant defence.  相似文献   

20.

Background  

Familial atrial fibrillation, an autosomal dominant disease, was previously mapped to chromosome 10q22. One of the genes mapped to the 10q22 region is DLG5, a member of the MAGUKs (Membrane Associated Gyanylate Kinase) family which mediates intracellular signaling. Only a partial cDNA was available for DLG5. To exclude potential disease inducing mutations, it was necessary to obtain a complete cDNA and genomic sequence of the gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号