首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different published sets of HLA-typed families of juvenile diabetes mellitus (JDM) patients have been analyzed. There was no significant genetic heterogeneity between them according to the criterion of Morton, and the total material was analyzed on the assumption of a single recessive (JDM-P) gene with incomplete penetrance. The analysis, carried out with the NYLIP program modified to account for penetrance less than 1 and for selection bias, yields highly significant lod scores for linkage between HLA and JDM-P, with a maximum value of 7.40 at theta = .05 +/- .03. The segregation of HLA and GLO in five affected sib pairs, in which one of the sibs carries an HLA/GLO recombinant, places JDM-P closer to HLA than the GLO locus: four of these five pairs are HLA-identical and GLO-different, in agreement with the conclusions of the formal linkage analysis. The data from these three independent sets of families are therefore consistent with our earlier claim that JDM is inherited as a recessive trait closely linked to HLA with reduced penetrance, and its analysis does not require more complicated genetic models.  相似文献   

2.
Summary In a large kindred of maturity-onset diabetes of the young (MODY), 99 individuals were studied for 21 blood genetic markers. There were 17 informative systems in the pedigree and lod scores for AcPh, GLO1, C6, Gm and HLA excluded close linkage of these loci with MODY. The linkage relationships of C6 were also examined. C6 was not closely linked with the chromosome 6 markers HLA, Bf and GLO1, nor with AcPh, GPT, Hp, Tf, or Gm.  相似文献   

3.
Evidence for genetic influences in epilepsy is strong, but reports identifying specific chromosomal origins of those influences conflict. One early study reported that human leukocyte antigen (HLA) markers were genetically linked to juvenile myoclonic epilepsy (JME); this was confirmed in a later study. Other reports did not find linkage to HLA markers. One found evidence of linkage to markers on chromosome 15, another to markers on chromosome 6, centromeric to HLA. We identified families through a patient with JME and genotyped markers throughout chromosome 6. Linkage analysis assuming equal male-female recombination probabilities showed evidence for linkage (LOD score 2.5), but at a high recombination fraction (theta), suggesting heterogeneity. When linkage analysis was redone to allow independent male-female thetas, the LOD score was significantly higher (4.2) at a male-female theta of.5,.01. Although the overall pattern of LOD scores with respect to male-female theta could not be explained solely by heterogeneity, the presence of heterogeneity and predominantly maternal inheritance of JME might explain it. By analyzing loci between HLA-DP and HLA-DR and stratifying the families on the basis of evidence for or against linkage, we were able to show evidence of heterogeneity within JME and to propose a marker associated with the linked form. These data also suggest that JME may be predominantly maternally inherited and that the HLA-linked form is more likely to occur in families of European origin.  相似文献   

4.
Genetic linkage studies are reported on two families with cleft lip +/- cleft palate. For the first family (LP01) the etiology of the clefting is unknown, and the linkage analyses were done assuming both autosomal dominant and autosomal recessive inheritance. Close linkage is rejected with the Duffy blood group under the dominant model and with four loci (Duffy, Kidd, and ABO blood groups and haptoglobin) under the recessive model. The second family (LP02) is a Mexican-American family segregating the van der Woude syndrome with lip pits. The linkage analyses for this autosomal dominant trait excluded close linkage with seven genetic markers, including three on chromosome one. The maximum lod scores were 0.6 with BF (chromosome 6) and 0.4 with the P blood group, which is not yet mapped.  相似文献   

5.
The present study combines segregation and linkage information on 30 families ascertained through a proband and a first degree relative affected with insulin-dependent diabetes mellitus (IDDM). An autosomal dominant model with incomplete penetrance was much more likely to fit the family data than a recessive model, whether or not linkage to HLA was assumed. The lod scores for linkage to HLA were 2.46 at theta M = theta F = 0.00 for dominant and 1.45 at theta M = theta F = 0.22 for a recessive model. The results are discussed in light of heterogeneity in likelihood and lod scores when the families are grouped by familial types, which indicate that the increase in likelihood of a dominant hypothesis can be attributed to the parent-child families and not the sib-sib families.  相似文献   

6.
Facioscapulohumeral muscular dystrophy (FSHD) is a slowly progressive primary disease of muscle which is usually inherited as an autosomal dominant disorder. FSHD has been localized to the long arm of chromosome 4, specifically to the 4q3.5-qter region. Initially published linkage studies showed no evidence for heterogeneity in FSHD. In the present study we have examined individuals in seven FSHD families. Two-point lod scores show significant evidence for linkage for D4S163 (lod score 3.04 at recombination fraction .21) and D4S139 (lod score 3.84 at recombination fraction .20). D4S171 also gave a positive score (lod score 2.56 at recombination fraction .24). Significant evidence for heterogeneity was found for each of the three markers. Multipoint linkage analysis in this region resulted in a peak multipoint lod score of 6.47. The multipoint analysis supported the two-point studies with odds of 20:1 showing linkage and heterogeneity over linkage and homogeneity. Five of the seven families gave a posterior probability of >95% of being of the linked type, while two families appeared unlinked to this region of 4q (P < .01%). Individuals in the two unlinked families met the clinical criteria for the diagnosis of FSHD, including facial weakness, clavicular flattening, scapula winging, proximal muscle weakness, and myopathic changes on muscle biopsies without inflammatory or mitochondrial pathology. This study demonstrates genetic heterogeneity in FSHD and has important implications for both genetic counseling and the elucidation of the etiology of FSHD.  相似文献   

7.
OBJECTIVES: The Admixture test is routinely used in linkage analysis to take account of genetic heterogeneity, and yields an estimate of the proportion of families (alpha) segregating the linked disease gene. In complex disorders, the assumptions of the Admixture test are violated. We therefore explore how the estimate of alpha relates to the true proportion of linked families with a complex disorder in a population or dataset. METHODS: We simulated a two-locus heterogeneity model and varied genetic parameters, ascertainment scheme and phenocopy frequency. RESULTS: In this model, alpha is almost always overestimated, by as little as 5% to as much as 60%. The bias is largely attributable to (1). intrafamilial heterogeneity arising from ascertainment of families with many affected members or from analysis of dense pedigrees; (2). low informativeness, which occurs in the presence of reduced penetrance; and (3). differences in the evidence for linkage in linked and unlinked families. This bias is also affected by the analysis phenocopy frequency, but only if the linked locus is dominant and the unlinked locus is recessive. CONCLUSIONS: We conclude that, in complex diseases, the Admixture test has greater value in detecting linkage than in estimating the proportion of linked families in a dataset.  相似文献   

8.
The power to detect linkage for likelihood and nonparametric (Haseman-Elston, affected-sib-pair, and affected-pedigree-member) methods is compared for the case of a common, dichotomous trait resulting from the segregation of two loci. Pedigree data for several two-locus epistatic and heterogeneity models have been simulated, with one of the loci linked to a marker locus. Replicate samples of 20 three-generation pedigrees (16 individuals/pedigree) were simulated and then ascertained for having at least 6 affected individuals. The power of linkage detection calculated under the correct two-locus model is only slightly higher than that under a single locus model with reduced penetrance. As expected, the nonparametric linkage methods have somewhat lower power than does the lod-score method, the difference depending on the mode of transmission of the linked locus. Thus, for many pedigree linkage studies, the lod-score method will have the best power. However, this conclusion depends on how many times the lod score will be calculated for a given marker. The Haseman-Elston method would likely be preferable to calculating lod scores under a large number of genetic models (i.e., varying both the mode of transmission and the penetrances), since such an analysis requires an increase in the critical value of the lod criterion. The power of the affected-pedigree-member method is lower than the other methods, which can be shown to be largely due to the fact that marker genotypes for unaffected individuals are not used.  相似文献   

9.
Determining the mode of inheritance is often difficult under the best of circumstances, but when segregation analysis is used, the problems of ambiguous ascertainment procedures, reduced penetrance, heterogeneity, and misdiagnosis make mode-of-inheritance determinations even more unreliable. The mode of inheritance can also be determined using a linkage-based method (maximized maximum lod score or mod score) and association-based methods, which can overcome many of these problems. In this work, we determined how much information is necessary to reliably determine the mode of inheritance from linkage data when heterogeneity and reduced penetrance are present in the data set. We generated data sets under both dominant and recessive inheritance with reduced penetrance and with varying fractions of linked and unlinked families. We then analyzed those data sets, assuming reduced penetrance, both dominant and recessive inheritance, and no heterogeneity. We investigated the reliability of two methods for determining the mode of inheritance from the linkage data. The first method examined the difference (delta) between the maximum lod scores calculated under the two mode-of-inheritance assumptions. We found that if delta was > 1.5, then the higher of the two maximum lod scores reflected the correct mode of inheritance with high reliability and that a delta of 2.5 appeared to practically guarantee a correct mode-of-inheritance inference. Furthermore, this reliability appeared to be virtually independent of alpha, the fraction of linked families in the data set, although the reliability decreased slightly as alpha fell below .50.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Summary Hereditary hydronephrosis (MIM 143400) is an autosomal dominant trait that causes unilateral or bilateral pelvi-ureteric junction (PUJ) obstruction. Linkage analysis was undertaken in 5 families with hereditary PUJ obstruction using the major histocompatibility complex locus as a test marker. The data as a whole supported a hereditary hydronephrosis locus on 6p. Maximal lod scores were 3.090 at a recombination fraction of 0.1 with full penetrance, and 2.486 at a recombination fraction of 0.1 with a penetrance of 90%. However, analysis of two point lod scores using the HOMOG program revealed significant evidence for genetic heterogeneity with one locus on 6p in 4 of the families, and a different locus in one family. After exclusion of this unlinked family, two point analysis gave a maximal lod score of 3.9 at a recombination fraction of 0.05 with full penetrance, and 4.2 at a recombination fraction of 0.0 with 90% penetrance. These data support the assignment of one of the loci for hereditary hydronephrosis to chromosome 6p.  相似文献   

11.
Insulin-dependent diabetes mellitus (IDDM) has a complex pattern of genetic inheritance. In addition to genes mapping to the major histocompatibility complex (MHC), several lines of evidence point to the existence of other genetic susceptibility factors. Recent studies of the nonobese diabetic mouse (NOD) model of IDDM have suggested the presence, on mouse chromosome 9, of a susceptibility gene linked to the locus encoding the T-cell antigen, Thy-1. A region on human chromosome 11q is syntenic to this region on mouse chromosome 9. We have used a set of polymorphic DNA markers from chromosome 11q to investigate this region for linkage to a susceptibility gene in 81 multiplex diabetic pedigrees. The data were investigated by maximization of lod scores over genetic models and by multiple-locus affected-sib-pair analysis. We were able to exclude the presence of a susceptibility gene (location scores less than -2) throughout greater than 90% of the chromosome 11q homology region, under the assumption that the susceptibility factor would cause greater than 50% of affected sib pairs to share two alleles identical by descent. Theoretical estimates of the power to map susceptibility genes with a high-resolution map of linked markers in a candidate region were made, using HLA as a model locus. This result illustrates the feasibility that IDDM linkage studies using mapped sets of polymorphic DNA markers have, both for other areas of the genome in IDDM and for other polygenic diseases. The analytic approaches introduced here will be useful for affected-sib-pair studies of other complex phenotypes.  相似文献   

12.
Summary The results of the present study provide independent support for F13A:HLA linkage and refine the F13A: HLA and F13A: GLO1 linkage relationships. Analysis of the corresponding recombination fractions for the total paternal F13A:HLA and F13A:GLO1 peak lod scores() indicates a locus order of 6pter: F13A:HLA:GLO1:cen. Lod scores between F13A and PLG, a locus recently assigned to chromosome 6, exclude close linkage between these loci.  相似文献   

13.
Heterogeneity, both inter- and intrafamilial, represents a serious problem in linkage studies of common complex diseases. In this study we simulated different scenarios with families who phenotypically have identical diseases but who genotypically have two different forms of the disease (both forms genetic). We examined the proportion of families displaying intrafamilial heterogeneity, as a function of mode of inheritance, gene frequency, penetrance, and sampling strategies. Furthermore, we compared two different ways of analyzing linkage in these data sets: a two-locus (2L) analysis versus a one-locus (SL) analysis combined with an admixture test. Data were simulated with tight linkage between one disease locus and a marker locus; the other disease locus was not linked to a marker. Our findings are as follows: (1) In contrast to what has been proposed elsewhere to minimize heterogeneity, sampling only "high-density" pedigrees will increase the proportion of families with intrafamilial heterogeneity, especially when the two forms are relatively close in frequency. (2) When one form is dominant and one is recessive, this sampling strategy will greatly decrease the proportions of families with a recessive form and may therefore make it more difficult to detect linkage to the recessive form. (3) An SL analysis combined with an admixture test achieves about the same lod scores and estimate of the recombination fraction as does a 2L analysis. Also, a 2L analysis of a sample of families with intrafamilial heterogeneity does not perform significantly better than an SL analysis. (4) Bilineal pedigrees have little effect on the mean maximum lod score and mean maximum recombination fraction, and therefore there is little danger that including these families will lead to a false exclusion of linkage.  相似文献   

14.
Model misspecification and multipoint linkage analysis.   总被引:9,自引:0,他引:9  
Pairwise linkage analysis is robust to genetic model misspecification provided dominance is correctly specified, the primary effect being inflation of the recombination fraction. By contrast, we show that multipoint analysis under misspecified models is not robust when a putative disease locus is placed between close flanking markers, with potentially spuriously negative multipoint lod scores being produced. The problem is due to incorrect attribution of segregation of a disease allele and the consequent conclusion of (unlikely) double crossovers between flanking markers. As a possible solution, we propose the use of high disease allele frequencies, as this allows probabilistically for nonsegregation (through parental homozygosity or dual matings). We show analytically and through analysis of pedigree data simulated under a two-locus heterogeneity model that using a disease allele frequency of 0.05 in the dominant case and 0.25 in the recessive case is quite robust in producing positive multipoint lod scores with close flanking markers across a broad range of conditions including varying allele frequencies, epistasis, genetic heterogeneity and phenocopies.  相似文献   

15.
The ability to taste phenylthiocarbamide (PTC) shows complex inheritance in humans. We obtained a quantitative measure of PTC tasting ability in 267 members of 26 large three-generation families that were part of a set of CEPH families that had been used for genetic mapping. Significant bimodality was found for the distribution of age and gender adjusted scores (P<0.001), with estimated means of 3.16 (SD=1.80) and 9.26 (SD=1.54). Using the extensive genotyping available in these families from the genetic mapping efforts, we performed a genome scan by using 1324 markers with an average spacing of 4 cM. Analyses were first carried out with a recessive genetic model that has traditionally been assumed for the trait, and a threshold score of 8.0 delineating tasters from non-tasters. In this qualitative analysis, the maximum genome-wide lod score was 4.74 at 246 cM on chromosome 7; 17 families showed segregation of the dichotomous PTC phenotype. No other lod scores were significant; the next highest score was on chromosome 10 (lod=1.64 at 85 cM), followed by chromosome 3 (lod=1.29 at 267 cM). Because PTC taste ability exhibited substantial quantitative variation, the quantitative trait was also analyzed by using a variance components approach in SOLAR. The maximum quantitative genome-wide lod score was 8.85 at 246 cM on chromosome 7. Evidence for other possible quantitative loci was found on chromosomes 1 (lod=2.31 at 344 cM) and 16 (lod=2.01 at 14 cM). A subsequent two-locus whole-genome scan conditional on the chromosome 7 quantitative trait locus identified the chromosome 16 locus (two-locus lod=3.33 at 14 cM).  相似文献   

16.
Evidence for a locus (EJM1) in the HLA region of chromosome 6p predisposing to idiopathic generalized epilepsy (IGE) in the families of patients with juvenile myoclonic epilepsy (JME) has been obtained in two previous studies of separately ascertained groups of kindreds. Linkage analysis has been undertaken in a third set of 25 families including a patient with JME and at least one first-degree relative with IGE. Family members were typed for eight polymorphic loci on chromosome 6p: F13A, D6S89, D6S109, D6S105, D6S10, C4B, DQA1/A2, and TCTE1. Pairwise and multipoint linkage analysis was carried out assuming autosomal dominant and autosomal recessive inheritance and age-dependent high or low penetrance. No significant evidence in favor of linkage was obtained at any locus. Multipoint linkage analysis generated significant exclusion data (lod score < -2.0) at HLA and for a region 10-30 cM telomeric to HLA, the extent of which varied with the level of penetrance assumed. These observations indicate that genetic heterogeneity exists within this epilepsy phenotype.  相似文献   

17.
The AMELX gene located at Xp22.1-p22.3 encodes for the enamel protein amelogenin and has been implicated as the gene responsible for the inherited dental abnormality X-linked amelogenesis imperfecta (XAI). Three families with XAI have been investigated using polymorphic DNA markers flanking the position of AMELX. Using two-point linkage analysis, linkage was established between XAI and several of these markers in two families, with a combined lod score of 6.05 for DXS16 at theta = 0.04. This supports the involvement of AMELX, located close to DXS16, in the XAI disease process (AIH1) in those families. Using multipoint linkage analysis, the combined maximum lod score for these two families was 7.30 for a location of AIH1 at 2 cM distal to DXS16. The support interval around this location extended about 8 cM proximal to DXS92, and the AIH1 location could not be precisely defined by multipoint mapping. Study of recombination events indicated that AIH1 lies in the interval between DXS143 and DXS85. There was significant evidence against linkage to this region in the third family, indicating locus heterogeneity in XAI. Further analysis with markers on the long arm of the X chromosome showed evidence of linkage to DXS144E and F9 with no recombination with either of these markers. Two-point analysis gave a peak lod score at DXS144E with a maximum lod score of 2.83 at theta = 0, with a peak lod score in multipoint linkage analysis of 2.84 at theta = 0. The support interval extended 9 cM proximal to DXS144E and 14 cM distal to F9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The syndrome of benign familial neonatal convulsions (BFNC) is a rare, autosomal dominant form of epilepsy. It is characterized by spontanous seizures beginning within the first 6 months of life. In the majority of families linkage is to chromosome 20q markers. Based on the linkage results in one large BFNC kindred, genetic heterogeneity and existence of a second locus on chromosome 8 have been suggested. Here we report on a second BFNC family in which linkage to the EBN1 locus on chromosome 20q was excluded, confirming the genetic heterogeneity of this disorder. All affected family members experienced onset of seizures before the age of 2 months. Three BFNC subjects showed subsequent epileptic seizures after 12 months of age, showing that the risk of subsequent epilepsy is not restricted to the chromosome 20q linked BFNC families. A lod score of 0.99 was obtained with the marker D8S274, suggesting linkage to chromosome 8.  相似文献   

19.
Linkage of human narcolepsy with HLA association to chromosome 4p13-q21   总被引:2,自引:0,他引:2  
Although narcolepsy is highly associated with human leukocyte antigen (HLA) DQ6/DQB1*0602 and/or DR2/DRB1*1501, most individuals with the HLA haplotype are free of narcolepsy. This indicates that HLA alone makes a relatively small contribution to the development of narcolepsy and that a non-HLA gene(s) can contribute to the genetic predisposition even in narcoleptic cases with HLA association. We conducted a genome-wide linkage search for narcolepsy in eight Japanese families with 21 DR2-positive patients (14 narcoleptic cases with cataplexy and 7 cases with an incomplete form of narcolepsy). A lod score of 3.09 suggested linkage to chromosome 4p13-q21. A lod score of 1.53 was obtained at the HLA-DRB1 locus, though this lod score may be biased since all the affected patients and many of the family members were DR2-positive. No other loci including hypocretin, hypocretin receptor 1, and hypocretin receptor 2 had lod scores greater than 1.0. The present study suggests that chromosome 4p13-q21 contains a second locus for HLA-associated human narcolepsy.  相似文献   

20.
Two generations of a family with autosomal dominant carpal tunnel syndrome were studied for genetic linkage to 20 informative polymorphic blood markers. No linkage was demonstrated between the syndrome and the markers tested; exclusion of close linkage (lod score less than -2.0) was found for MNSs, ACP, GALT, GPT, GLO, Hp, Gc, and Pi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号