首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A search for poly(ADP-ribose) polymerase-1 inhibitors by virtual screening of a chemical compound database and a subsequent experimental verification of their activities have been done. It was shown that the most efficient method to predict inhibitory properties implies a combinatorial approach joining molecular docking capabilities with structural filtration. Among more than 300000 database chemicals 9 PARP1 inhibitors were revealed; the most active ones, namely: STK031481, STK056130, and STK265022,--displayed biological effect at a micro-molar concentration (IC50 = 2.0 microM, 1.0 microM and 2.6 microM, respectively).  相似文献   

2.
3.
Prostate cancer (PCa) is the second leading cause of cancer-related death in men; however, the molecular mechanisms leading to its development and progression are not yet fully elucidated. Of note, it has been recently shown that conditional stk11 knockout mice develop atypical hyperplasia and prostate intraepithelial neoplasia (PIN). We recently reported an inverse correlation between the activity of the STK11/AMPK pathway and the MAPK/p38 cascade in HIF1A-dependent malignancies. Furthermore, MAPK/p38 overactivation was detected in benign prostate hyperplasia, PIN and PCa in mice and humans. Here we report that STK11 expression is significantly decreased in PCa compared to normal tissues. Moreover, STK11 protein levels decreased throughout prostate carcinogenesis. To gain insight into the role of STK11-MAPK/p38 activity balance in PCa, we treated PCa cell lines and primary biopsies with a well-established MAPK14-MAPK11 inhibitor (SB202190), which has been extensively used in vitro and in vivo. Our results indicate that inhibition of MAPK/p38 significantly affects PCa cell survival in an STK11-dependent manner. Indeed, we found that pharmacologic inactivation of MAPK/p38 does not affect viability of STK11-proficient PCa cells due to the triggering of the AMPK-dependent autophagic pathway, while it induces apoptosis in STK11-deficient cells irrespective of androgen receptor (AR) status. Of note, AMPK inactivation or autophagy inhibition in STK11-proficient cells sensitize SB202190-treated PCa cells to apoptosis. On the other end, reconstitution of functional STK11 in STK11-deficient PCa cells abrogates apoptosis. Collectively, our data show that STK11 is a key factor involved in the early phases of prostate carcinogenesis, and suggest that it might be used as a predictive marker of therapeutic response to MAPK/p38 inhibitors in PCa patients.  相似文献   

4.
We describe the STK38 protein kinase as a conserved regulator of autophagy. We discovered STK38 as a novel binding partner of Beclin1, a key regulator of autophagy. By combining molecular, cell biological and genetic approaches, we show that STK38 promotes autophagosome formation in human cells and in Drosophila. Furthermore, we also provide evidence demonstrating that STK38 with the small GTPase RalB, assist the co-ordination between autophagic and apoptotic events upon autophagy induction, hence proposing a role for STK38 in determining cellular fate in response to autophagic conditions.  相似文献   

5.
The tumor suppressor kinase LKB1 is mutated in a broad range of cancers however, the role of LKB1 mammary gland tumorigenesis is not fully understood. Evaluation of human breast cancer tissue microarrays, indicate that 31% of HER2 positive samples lacked LKB1 expression. To expand on these observations, we crossed STK11fl/fl mice with mice genetically engineered to express activated Neu/HER2-MMTV-Cre (NIC) under the endogenous Erbb2 promoter, to generate STK11−/−/NIC mice. In these mice, the loss of lkb1 expression reduced the latency of ErbB2-mediated tumorigenesis compared to the latency of tumorigenesis in NIC mice alone. Analysis of STK11−/−/NIC mammary tumors revealed hyperactivation of mammalian target of rapamycin (mTOR) through both mTORC1 and mTORC2 pathways as determined by the phosphorylation status of ribosomal protein S6 and AKT. Furthermore, STK11−/−/NIC mammary tumors had elevated ATP levels along with changes in metabolic enzymes and metabolites. The treatment of primary mammary tumor cells with specific mTOR inhibitors AZD8055 and Torin1, that target both mTOR complexes, attenuated mTOR activity and decreased expression of glycolytic enzymes. Our findings underscore the existence of a molecular interplay between LKB1-AMPK-mTORC1 and ErbB2-AKT-mTORC2 pathways with mTOR at its epicenter, suggestive that loss of LKB1 expression may serve as a marker for hyperactivated mTOR in HER2 positive breast cancer and warranting further investigation into therapeutics that target LKB1-AMPK-mTOR and glycolytic pathways.  相似文献   

6.
Inhibitors of poly (ADP-ribose)-polymerase-1 (PARP) are highly lethal to cells with deficiencies in BRCA1, BRCA2 or other components of the homologous recombination pathway. This has led to PARP inhibitors entering clinical trials as a potential therapy for cancer in carriers of BRCA1 and BRCA2 mutations. To discover new determinants of sensitivity to these drugs, we performed a PARP-inhibitor synthetic lethal short interfering RNA (siRNA) screen. We identified a number of kinases whose silencing strongly sensitised to PARP inhibitor, including cyclin-dependent kinase 5 (CDK5), MAPK12, PLK3, PNKP, STK22c and STK36. How CDK5 silencing mediates sensitivity was investigated. Previously, CDK5 has been suggested to be active only in a neuronal context, but here we show that CDK5 is required in non-neuronal cells for the DNA-damage response and, in particular, intra-S and G(2)/M cell-cycle checkpoints. These results highlight the potential of synthetic lethal siRNA screens with chemical inhibitors to define new determinants of sensitivity and potential therapeutic targets.  相似文献   

7.
STK15/Aurora2 is a centrosome-associated serine/threonine kinase, the protein levels and kinase activity of which rise during G2 and mitosis. STK15 overexpression induces tumorigenesis and is amplified in various human cancers and tumor cell lines. Thus, STK15 represents an important therapeutic target for small molecule inhibitors that would disrupt its activity and block cell proliferation. The availability of a robust and selective small molecule inhibitor would also provide a useful tool for identification of the potential role of STK15 in cell cycle regulation and tumor development. The authors report the development of a novel, fast, simple microplate assay for STK15 activity suitable for high-throughput screening. In the assay, gamma-(33)P-ATP and STK15 were incubated in a myelin basic protein (MBP)-coated FlashPlate(R) to generate a scintillation signal. The assay was reproducible, the signal-to-noise ratio was high (11) and the Z' factor was 0.69. The assay was easily adapted to a robotic system for drug discovery programs targeting STK15. The authors also demonstrate that STK15 is regulated by phosphorylation and the N-amino terminal domain of the protein. Treatment with phosphatase inhibitors (okadaic acid) or deletion of the N-amino terminal domain results in a significant increase in the enzymatic activity.  相似文献   

8.
2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.  相似文献   

9.
10.
Compounds that can effectively inhibit the proteolytic activity of human neutrophil elastase (HNE) represent promising therapeutics for treatment of inflammatory diseases. We present here the synthesis, structure–activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with a cinnoline scaffold. These compounds exhibited HNE inhibitory activity but had lower potency compared to N-benzoylindazoles previously reported by us. On the other hand, they exhibited increased stability in aqueous solution. The most potent compound, 18a, had a good balance between HNE inhibitory activity (IC50 value?=?56?nM) and chemical stability (t1/2?=?114?min). Analysis of reaction kinetics revealed that these cinnoline derivatives were reversible competitive inhibitors of HNE. Furthermore, molecular docking studies of the active products into the HNE binding site revealed two types of HNE inhibitors: molecules with cinnolin-4(1H)-one scaffold, which were attacked by the HNE Ser195 hydroxyl group at the amido moiety, and cinnoline derivatives containing an ester function at C-4, which is the point of attack of Ser195.  相似文献   

11.
New research and development efforts using computational chemistry in studying an assessment of the validity of different quantum chemical methods to describe the molecular and electronic structures of some corrosion inhibitors were introduced. The standard and the highly accurate CCSD method with 6-311++G(d,p), ab initio calculations using the HF/6-31G++(d,p) and MP2 with 6-311G(d,p), 6-31++G(d,p), and 6-311++G(2df,p) methods as well as DFT method at the B3LYP, BP86, B3LYP*, M06L, and M062x/6-31G++(d,p) basis set level were performed on some triazole derivatives and sulfur containing compounds used as corrosion inhibitors. Quantum chemical parameters, such as the energy of the highest occupied molecular orbital energy (EHOMO), the energy of the lowest unoccupied molecular orbital energy (ELUMO), energy gap (ΔE), dipole moment (μ), sum of total negative charges (TNC), chemical potential (Pi), electronegativity (χ), hardness (η), softness (σ), local softness (s), Fukui functions (f +,f ?), electrophilicity (ω), the total energy change (?ET) and the solvation energy (S.E), were calculated. Furthermore, the accuracy and the applicability of these methods were estimated relative to the highest accuracy and standard CCSD with 6-311++G(d,p) method. Good correlations between the quantum chemical parameters and the corresponding inhibition efficiency (IE%) were found.  相似文献   

12.
Specificity is an important aspect of structure-based drug design. Distinguishing between related targets in different organisms is often the key to therapeutic success. Pneumocystis carinii is a fungal opportunist which causes a crippling pneumonia in immunocompromised individuals. We report the identification of novel inhibitors of P. cariniidihydrofolate reductase (DHFR) that are selective versus inhibition of human DHFR using computational molecular docking techniques. The Fine Chemicals Directory, a database of commercially available compounds, was screened with the DOCK program suite to produce a list of potential P. carinii DHFR inhibitors. We then used a postdocking refinement directed at discerning subtle structural and chemical features that might reflect species specificity. Of 40 compounds predicted to exhibit anti-PneumocystisDHFR activity, each of novel chemical framework, 13 (33%) show IC50 values better than 150 μM in an enzyme assay. These inhibitors were further assayed against human DHFR: 10 of the 13 (77%) bind preferentially to the fungal enzyme. The most potent compound identified is a 7 μM inhibitor of P. carinii DHFR with 25-fold selectivity. The ability of molecular docking methods to locate selective inhibitors reinforces our view of structure-based drug discovery as a valuable strategy, not only for identifying lead compounds, but also for addressing receptor specificity. Proteins 29:59–67, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Thirty novel triaryl compounds were designed and synthesized based on the known proteasome inhibitor PI-1840. Most of them showed significant inhibition against the β5c subunit of human 20S proteasome, and five of them exhibited IC50 values at the sub-micromolar level, which were comparable to or even more potent than PI-1840. The most active two (1c and 1d) showed IC50 values of 0.12 and 0.18 μM against the β5c subunit, respectively, while they displayed no obvious inhibition against the β2c, β1c and β5i subunits. Molecular docking provided informative clues for the subunit selectivity. The potent and subunit selective proteasome inhibitors identified herein represent new chemical templates for further molecular optimization.  相似文献   

14.
Soluble epoxide hydrolase (sEH) is a promising new target for treating hypertension and inflammation. Considerable efforts have been devoted to develop novel inhibitors. In this study, the binding modes and interaction mechanisms of a series of adamantyl-based 1,3-disubstituted urea inhibitors were investigated by molecular docking, molecular dynamics simulations, binding free energy calculations, and binding energy decomposition analysis. Based on binding affinity, the most favorable binding mode was determined for each inhibitor. The calculation results indicate that the total binding free energy (ΔGTOT, the sum of enthalpy ΔGMM-GB/SA, and entropy ?TΔS) presents a good correlation with the experimental inhibitory activity (IC50, r2?=?.99). The van der Waals energy contributes most to the total binding free energy (ΔGTOT). A detailed discussion on the interactions between inhibitors and those residues located in the active pocket is made based on hydrogen bond and binding modes analysis. According to binding energy decomposition, the residues Asp333 and Trp334 contribute the most to binding free energy in all systems. Furthermore, Hip523 plays a major role in determining this class of inhibitor-binding orientations. Combined with the results of hydrogen bond analysis and binding free energy, we believe that the conserved hydrogen bonds play a role only in anchoring the inhibitors to the exact site for binding and the number of hydrogen bonds may not directly relate to the binding free energy. The results we obtained will provide valuable information for the design of high potency sEH inhibitors.  相似文献   

15.
16.
Human alpha-chain globin messenger: prediction of a nucleotide sequence   总被引:4,自引:0,他引:4  
The presence in human serum of inhibitory activity to rat liver insulin specific protease has been detected in an alpha1 globulin preparation (Cohn Fraction IV1). Separation into four components and partial purification (40 to 107 fold) has been achieved by heat denaturation of non-active protein, Sephadex G-100 gel filtration and ion-exchange chromatography upon QAE Sephadex. Each of the inhibitors was found to be competitive in nature. The molecular weight of the inhibitors is between 4,000–7,000 and the activity is destroyed for the most part by chymotrypsin.  相似文献   

17.
The Atg8 family protein LC3 is indispensible for autophagy and plays critical roles in multiple steps of the process. Despite this functional significance, the regulation of LC3 activity at the posttranslational level remains poorly understood. In a recent study, we report that the conserved Ste20 kinases STK3 and STK4, the mammalian orthologs of Hippo kinase, are essential for autophagy in diverse organisms, and both can phosphorylate LC3 on amino acid Thr50. STK3/STK4-mediated phosphorylation is critical for fusion of autophagosomes with lysosomes, as well as the ability of cells to clear intracellular bacteria, an established cargo for autophagy. Our discovery of a novel mode of autophagy regulation involving direct phosphorylation of LC3 by STK3/STK4 significantly enhances our molecular understanding of the autophagy process. Moreover, our findings raise the exciting possibility that STK3/STK4''s known roles in immunity are exerted through their ability to regulate autophagy via LC3 phosphorylation.  相似文献   

18.
Pathogenic mutations in the serine/threonine kinase STK11 (alias LKB1) cause Peutz-Jeghers syndrome (PJS) in most affected individuals. However, in a considerable number of PJS-patients mutations cannot be detected in STK11 suggesting genetic heterogeneity. One PJS family without STK11 mutations (PJS07) has previously been described with significant evidence for linkage to a second potential PJS locus on 19q13.3-->q13.4. In this study we investigated candidate genes within markers D19S180 and D19S254, since multipoint linkage analysis yielded significant LOD scores for this region in this family. Four genes in the region (cytohesin 2: PSCD2, kallikrein 10: KLK10, protein kinase C gamma: PRKCG, and serine/threonine kinase 13: STK13) potentially involved in growth inhibitory pathways or in the pathophysiology of can- cer, were considered as candidates. We first determined the genomic structure of the PSCD2 and PRKCG genes, and performed mutation analysis of all exons and exon-intron junctions of the four genes, in the PJS07 family. No pathogenic mutation was identified in these four genes in affected individuals. A very rare polymorphism resulting in a conserved amino acid change Lys to Arg was found in PSCD2. These data provide considerable evidence for exclusion of these four genes as candidates for the second locus on 19q13.3-->q13.4 in PJS. Finally, we also excluded the recently identified STK11-interacting protein gene (STK11IP, alias LIP1) mapped in 2q36 as candidate for PJS in the PJS07 family, although this could be a good candidate in other non-STK11/LKB1 families.  相似文献   

19.
Based on crystallographic overlays of the known inhibitors TMC125 and R221239 complexed in RT, we designed a novel series of 4-phenoxy-6-(phenylamino)pyridin-2(1H)-one derivatives as HIV NNRTIs by molecular hybridization approach. The biological testing results indicated that 2-pyridone scaffold of these inhibitors was indispensable for their anti-HIV-1 activity, and substitution of halogen at the 3-position of the 2-pyridone ring would decrease the anti-HIV activity. Four most potent compounds had anti-HIV-1 IIIB activities at low micromolar concentrations (EC50 = 0.15–0.84 μM), comparable to that of nevirapine and delavidine. Some compounds were selected to test their anti-HIV-1 RT inhibitory action and to perform molecular modeling studies to predict the binding mode of these 2-pyridone derivatives.  相似文献   

20.
Quantum chemical calculations using the density functional theory (B3LYP/6-31G* DFT) and semi-empirical AM1 methods were performed on ten pyridine derivatives used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. Quantum chemical parameters such as total negative charge (TNC) on the molecule, energy of highest occupied molecular orbital (E HOMO), energy of lowest unoccupied molecular orbital (E LUMO) and dipole moment (μ) as well as linear solvation energy terms, molecular volume (Vi) and dipolar-polarization (π*) were correlated to corrosion inhibition efficiency of ten pyridine derivatives. A possible correlation between corrosion inhibition efficiencies and structural properties was searched to reduce the number of compounds to be selected for testing from a library of compounds. It was found that theoretical data support the experimental results. The results were used to predict the corrosion inhibition of 24 related pyridine derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号