首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We estimate parameters of a general isolation-with-migration model using resequence data from mitochondrial DNA (mtDNA), the Y chromosome, and two loci on the X chromosome in samples of 25-50 individuals from each of 10 human populations. Application of a coalescent-based Markov chain Monte Carlo technique allows simultaneous inference of divergence times, rates of gene flow, as well as changes in effective population size. Results from comparisons between sub-Saharan African and Eurasian populations estimate that 1500 individuals founded the ancestral Eurasian population approximately 40 thousand years ago (KYA). Furthermore, these small Eurasian founding populations appear to have grown much more dramatically than either African or Oceanian populations. Analyses of sub-Saharan African populations provide little evidence for a history of population bottlenecks and suggest that they began diverging from one another upward of 50 KYA. We surmise that ancestral African populations had already been geographically structured prior to the founding of ancestral Eurasian populations. African populations are shown to experience low levels of mitochondrial DNA gene flow, but high levels of Y chromosome gene flow. In particular, Y chromosome gene flow appears to be asymmetric, i.e., from the Bantu-speaking population into other African populations. Conversely, mitochondrial gene flow is more extensive between non-African populations, but appears to be absent between European and Asian populations.  相似文献   

2.
We use variation at a set of eight human Y chromosome microsatellite loci to investigate the demographic history of the Y chromosome. Instead of assuming a population of constant size, as in most of the previous work on the Y chromosome, we consider a model which permits a period of recent population growth. We show that for most of the populations in our sample this model fits the data far better than a model with no growth. We estimate the demographic parameters of this model for each population and also the time to the most recent common ancestor. Since there is some uncertainty about the details of the microsatellite mutation process, we consider several plausible mutation schemes and estimate the variance in mutation size simultaneously with the demographic parameters of interest. Our finding of a recent common ancestor (probably in the last 120,000 years), coupled with a strong signal of demographic expansion in all populations, suggests either a recent human expansion from a small ancestral population, or natural selection acting on the Y chromosome.  相似文献   

3.
Y chromosomal DNA variation and the peopling of Japan.   总被引:26,自引:12,他引:26       下载免费PDF全文
Four loci mapping to the nonrecombining portion of the Y chromosome were genotyped in Japanese populations from Okinawa, the southernmost island of Japan; Shizuoka and Aomori on the main island of Honshu; and a small sample of Taiwanese. The Y Alu polymorphic (YAP) element is present in 42% of the Japanese and absent in the Taiwanese, confirming the irregular distribution of this polymorphism in Asia. Data from the four loci were used to determine genetic distances among populations, construct Y chromosome haplotypes, and estimate the degree of genetic diversity in each population and on different Y chromosome haplotypes. Evolutionary analysis of Y haplotypes suggests that polymorphisms at the YAP (DYS287) and DXYS5Y loci originated a single time, whereas restriction patterns at the DYS1 locus and microsatellite alleles at the DYS19 locus arose more than once. Genetic distance analysis indicated that the Okinawans are differentiated from Japanese living on Honshu. The data support the hypotheses that modern Japanese populations have resulted from distinctive genetic contributions involving the ancient Jomon people and Yayoi immigrants from Korea or mainland China, with Okinawans experiencing the least amount of admixture with the Yayoi. It is suggested that YAP+ chromosomes migrated to Japan with the Jomon people > 10,000 years ago and that a large infusion of YAP- chromosomes entered Japan with the Yayoi migration starting 2,300 years ago. Different degrees of genetic diversity carried by these two ancient chromosomal lineages may be explained by the different life-styles (hunter-gatherer versus agriculturalist). of the migrant groups, the size of the founding populations, and the antiquities of the founding events.  相似文献   

4.
Trimeric and tetrameric short tandem repeats (STRs) represent a rich source of highly polymorphic markers in the human genome that may be studied with the polymerase chain reaction (PCR). We report the analysis of a multilocus genotype survey of 97-380 chromosomes in U.S. Black, White, Mexican-American, and Asian populations at five STR loci located on chromosomes 1, 4, 11, and X. The heterozygote frequencies of the loci ranged from 0.36 to 0.91 and the number of alleles from 6 to 20 for the 20 population and locus combinations. Relative allele frequencies exhibited differences between populations and unimodal, bimodal, and complex distributions. Although deviations were noted at some locus-population test combinations, genotype data from the loci were consistent overall with Hardy-Weinberg equilibrium by three tests. Population subheterogeneity within each ethnic group was not detected by two additional tests. No mutations were detected in a total of 860 meioses for two loci studied in the CEPH kindreds and five loci studied in other families. An indirect estimate of the mutation rates gave values from 2.3 x 10(-5) to 15.9 x 10(-5) for the five loci. Higher mutation rates appear to be associated with greater numbers of tandem repeats in the core motif. The most frequent genotype for all five loci combined appears to have a frequency of 7.59 x 10(-4). Together, these results suggest that trimeric and tetrameric STR loci are useful markers for the study of new mutations and genetic linkage analysis and for application to personal identification in the medical and forensic sciences.  相似文献   

5.
To investigate the origins and relationships of Australian and Melanesian populations, 611 males from 18 populations from Australia, Melanesia, and eastern/southeastern Asia were typed for eight single-nucleotide polymorphism (SNP) loci and seven short tandem-repeat loci on the Y chromosome. A unique haplotype, DYS390.1del/RPS4Y711T, was found at a frequency of 53%-69% in Australian populations, whereas the major haplotypes found in Melanesian populations (M4G/M5T/M9G and DYS390.3del/RPS4Y711T) are absent from the Australian populations. The Y-chromosome data thus indicate independent histories for Australians and Melanesians, a finding that is in agreement with evidence from mtDNA but that contradicts some analyses of autosomal loci, which show a close relationship between Australian and Melanesian (specifically, highland Papua New Guinean) populations. Since the Australian and New Guinean landmasses were connected when first colonized by humans > or =50,000 years ago but separated some 8,000 years ago, a possible way to reconcile all the genetic data is to infer that the Y-chromosome and mtDNA results reflect the past 8,000 years of independent history for Australia and New Guinea, whereas the autosomal loci reflect the long preceding period of common origin and shared history. Two Y-chromosome haplotypes (M119C/M9G and M122C/M9G) that originated in eastern/southeastern Asia are present in coastal and island Melanesia but are rare or absent in both Australia and highland Papua New Guinea. This distribution, along with demographic analyses indicating that population expansions for both haplotypes began approximately 4,000-6,000 years ago, suggests that these haplotypes were brought to Melanesia by the Austronesian expansion. Most of the populations in this study were previously typed for mtDNA SNPs; population differentiation is greater for the Y chromosome than for mtDNA and is significantly correlated with geographic distance, a finding in agreement with results of similar analyses of European populations.  相似文献   

6.
Data on 113,913 liveborn children from a hospital in Guadalajara, Jalisco (Mexico), were analysed for birth defects (BD); mutation rates were calculated for sporadic aneuploidy, chromosome aberrations and dominant gene mutations. The results showed a general incidence of 13.92 BD cases per 1000 liveborns, of which 1.64% were chromosomal abnormalities, 1.50% were aneuploid, 0.14% were structural chromosome aberrations and 3.23% were dominant gene mutations. The mutation rates were 8.20 x 10(-4) chromosomal abnormalities, 7.5 x 10(-4) aneuploidies, 7.0 x 10(-5) chromosome aberrations and 1.61 x 10(-3) dominant gene mutations/gamete/generation, respectively. The lethality rate was 15.32% of the liveborns with BD. The described findings estimate the incidence of new human mutants detected at birth in a sample of the Mexican population. They show that the rate for some aneuploidies are similar to those found in other populations previously reported in the literature but the rates of chromosome and dominant gene mutations were different.  相似文献   

7.
4个Y-STR基因座的多态性及其法医学应用的研究   总被引:16,自引:2,他引:16  
通过荧光标记引物结合ABI377型全自动DNA测序仪检测自动分型方法对中国壮族及汉族人群中各100例无关男性个体的 A10、C4、A7.1、A7.2等4个Y染色体特异的基因座的等位基因及单倍型的分布进行了调查。结果发现 A10、C4、A7.1 A7.2基因座分别有7、6、6、6个等位基因,基因多样性(GD)分别为0.7776/0.629(壮/汉)、0.773/0.732、0.5978/0.7272、0.6664/0.6458。在200个观察样本中共发现114种单倍型(haplotype),单倍型多样性(haplotype diversity,ID)分别为0.9786/0.9772(壮/汉)。通过测序确认基因座核心重复序列及等位基因核心序列重复数。建立了这4个基因座的复合扩增体系,分型准确清晰。还对这4个基因座的男性特异性、遗传稳定性、灵敏度等法医学有关指标进行了考察并且在实际案例中进行了应用,结果证明,这4个Y-STRs基因座非常适应于法医检验,具有较高的实用价值。  相似文献   

8.
Maternal isodisomy for chromosome 7 was observed in a 4-year-old cystic fibrosis patient with very short stature. In an examination of 11 DNA polymorphisms spanning the entire length of chromosome 7, no paternal contribution could be shown in seven informative loci. Paternity was examined with probes for five polymorphic loci on the Y chromosome, for the pseudo beta-globin locus on chromosome 11 and by Jeffreys's hypervariable probes. The results with the latter gave a probability of 3.7 x 10(-9) for nonpaternity. Chromosomal examination revealed a centromeric heteromorphism of chromosome 7 in the mother, for which the proband was homozygous. Isodisomy of the patient was thus shown for the entire length of a maternal chromosome 7. The mechanisms leading to this isodisomy involve at least two events of abnormal cell division, events that may be meiotic, postzygotic, or both. This proband is the second reported maternal isodisomy; both were detected through homozygosity for CF. Both patients had short stature, which could have been caused by parental imprinting, since similar results have been observed in isodisomic mice. Homozygosity due to uniparental descent in man should be kept in mind as a mechanism for recessive disorders, especially for chromosome 7.  相似文献   

9.
A short tandem repeat-based phylogeny for the human Y chromosome   总被引:9,自引:0,他引:9       下载免费PDF全文
Human Y-chromosomal short tandem repeat (STR) data provide a potential model system for the understanding of autosomal STR mutations in humans and other species. Yet, the reconstruction of STR evolution is rarely attempted, because of the absence of an appropriate methodology. We here develop and validate a phylogenetic-network approach. We have typed 256 Y chromosomes of indigenous descent from Africa, Asia, Europe, Australia, and highland Papua New Guinea, for the STR loci DYS19, DXYS156Y, DYS389, DYS390, DYS392, and DYS393, as well as for five ancient biallelic mutation events: two poly (A) length variants associated with the YAP insertion, two independent SRY-1532 mutations, and the 92R7 mutation. We have used our previously published pedigree data from 11,000 paternity-tested autosomal STR-allele transfers to produce a two-class weighting system for the Y-STR loci that is based on locus lengths and motif lengths. Reduced-median-network analysis yields a phylogeny that is independently supported by the five biallelic mutations, with an error of 6%. We find the earliest branch in our African San (Bushmen) sample. Assuming an age of 20,000 years for the Native American DYS199 T mutation, we estimate a mutation rate of 2.6x10-4 mutations/20 years for slowly mutating Y STRs, approximately 10-fold slower than the published average pedigree rate.  相似文献   

10.
Autosomal genes involved in mammalian primary sex determination   总被引:1,自引:0,他引:1  
Beginning with findings made during the late 1950s and early 1960s, evidence continues to accumulate in support of the hypothesis that the mammalian Y chromosome carries a gene that induces the undifferentiated foetal gonad in XY individuals to develop as a testis. Recently a DNA sequence has been isolated from the human Y chromosome that appears to be the hypothesized Y-linked testis-determining gene, and advances have also been made toward identifying genes that interact with the Y-linked testis-determining (Tdy) gene to initiate testis formation. These loci have been identified in specific stocks of mice carrying the mutant Thp or TOrl allele at the T locus located on chromosome 17, and in crosses involving the transfer of a Y chromosome from two populations of Mus domesticus into the genomes of specific inbred strains of mice. The data in both cases support the hypothesis that there are several loci involved in testis determination and that abnormal interaction of these loci disrupts initiation of testis determination, resulting in development of ovarian tissue in XY individuals.  相似文献   

11.
The Y-chromosomal gene TSPY (testis-specific protein Y-encoded) is probably involved in early spermatogenesis and has a variable copy number in different mammalian species. Analysis of bovine BAC clones leads to an estimate of 90 TSPY loci on the bovine Y chromosome. Half of these loci (TSPY-M1 and TSPY-M2) contain a single copy, while the other loci (TSPY-C) contain a cluster of three, possibly four, truncated pseudogenes. Fluorescence in situ hybridization indicated that the TSPY loci are located mainly on the short arm (Yp). The TSPY genes appear to account for about 2.5% of the Y chromosome and contain several published bovine Y-chromosomal microsatellites. The homology of TSPY and the major Y-chromosomal repetitive elements BRY.2 from cattle and OY.1 from sheep (80-85% similarity) further illustrates how the Y chromosome is shaped by rearrangements and horizontal spreading of the most abundant sequences. A comparison of TSPY-M1 sequences from different BAC clones and from related bovine species suggests concerted evolution as one of the mechanisms of the rapid evolution of the mammalian Y chromosome.  相似文献   

12.
Reduced variation on the chicken Z chromosome   总被引:6,自引:0,他引:6  
Understanding the population genetic factors that shape genome variability is pivotal to the design and interpretation of studies using large-scale polymorphism data. We analyzed patterns of polymorphism and divergence at Z-linked and autosomal loci in the domestic chicken (Gallus gallus) to study the influence of mutation, effective population size, selection, and demography on levels of genetic diversity. A total of 14 autosomal introns (8316 bp) and 13 Z-linked introns (6856 bp) were sequenced in 50 chicken chromosomes from 10 highly divergent breeds. Genetic variation was significantly lower at Z-linked than at autosomal loci, with one segregating site every 39 bp at autosomal loci (theta(W) = 5.8 +/- 0.8 x 10(-3)) and one every 156 bp on the Z chromosome (theta(W) = 1.4 +/- 0.4 x 10(-3)). This difference may in part be due to a low male effective population size arising from skewed reproductive success among males, evident both in the wild ancestor-the red jungle fowl-and in poultry breeding. However, this effect cannot entirely explain the observed three- to fourfold reduction in Z chromosome diversity. Selection, in particular selective sweeps, may therefore have had an impact on reducing variation on the Z chromosome, a hypothesis supported by the observation of heterogeneity in diversity levels among loci on the Z chromosome and the lower recombination rate on Z than on autosomes. Selection on sex-linked genes may be particularly important in organisms with female heterogamety since the heritability of sex-linked sexually antagonistic alleles advantageous to males is improved when fathers pass a Z chromosome to their sons.  相似文献   

13.
DNA analysis is making a valuable contribution to the understanding of human evolution [1]. Much attention has focused on mitochondrial DNA (mtDNA) [2] and the Y chromosome [3] and [4], both of which escape recombination and so provide information on maternal and paternal lineages, respectively. It is often assumed that the polymorphisms observed at loci on mtDNA and the Y chromosome are selectively neutral and, therefore, that existing patterns of molecular variation can be used to deduce the histories of populations in terms of drift, population movements, and cultural practices. The coalescence of the molecular phylogenies of mtDNA and the Y chromosome to recent common ancestors in Africa [5] and [6], for example, has been taken to reflect a recent origin of modern human populations in Africa. An alternative explanation, though, could be the recent selective spread of mtDNA and Y chromosome haplotypes from Africa in a population with a more complex history [7]. It is therefore important to establish whether there are selective differences between classes (haplotypes) of mtDNA and Y chromosomes and, if so, whether these differences could have been sufficient to influence the distributions of haplotypes in existing populations. A precedent for this hypothesis has been established for mtDNA in that one mtDNA background increases susceptibility to Leber hereditary optic neuropathy [8]. Although studies of nucleotide diversity in global samples of Y chromosomes have suggested an absence of recent selective sweeps or bottlenecks [9], selection may, in principle, be very important for the Y chromosome because it carries several loci affecting male fertility [10] and [11] and as many as 5% of males are infertile [11] and [12]. Here, we show that one class of infertile males, PRKX/PRKY translocation XX males, arises predominantly on a particular Y haplotypic background. Selection is, therefore, acting on Y haplotype distributions in the population.  相似文献   

14.
Analyses of Southern blots of rodent x owl monkey somatic cell hybrids permitted syntenic assignment of gene loci coding for triosephosphate isomerase (TPI), antigen CD4(T4), Kirsten rat sarcoma 2(KRAS2) virus, insulin-like growth factor 1 (IGF1), and alpha 2-macroglobulin (A2M) to chromosome 10 of owl monkey karyotype VI(2n = 49, 50). In addition, regional in situ localization of the T4 and KRAS2 loci on the proximal region of the long arm of this acrocentric chromosome and on the corresponding homologous region on the long arm of metacentric chromosome 1 of karyotype IV (2n = 52) substantiated our hypothesis that a single fusion or fission event is responsible for the polymorphism in chromosome number characteristic of owl monkeys from at least three allopatric populations. The study supports a putative homoeology between owl monkey chromosome 10 (K-VI) and human chromosome 12. The morphological differences between these two primate chromosomes indicate evolutionary rearrangements involving at least one pericentric inversion.  相似文献   

15.
Pseudoautosomal regions (PARs) shared by avian Z and W sex chromosomes are typically small homologous regions within which recombination still occurs and are hypothesized to share the properties of autosomes. We capitalized on the unusual structure of the sex chromosomes of emus, Dromaius novaehollandiae, which consist almost entirely of PAR shared by both sex chromosomes, to test this hypothesis. We compared recombination, linkage disequilibrium (LD), GC content, and nucleotide diversity between pseudoautosomal and autosomal loci derived from 11 emu bacterial artificial chromosome (BAC) clones that were mapped to chromosomes by fluorescent in situ hybridization. Nucleotide diversity (pi = 4N(e)mu) was not significantly lower in pseudoautosomal loci (14 loci, 1.9 +/- 2.4 x 10(-3)) than autosomal loci (8 loci, 4.2 +/- 6.1 x 10(-3)). By contrast, recombination per site within BAC-end sequences (rho = 4Nc) (pseudoautosomal, 3.9 +/- 6.9 x 10(-2); autosomal, 2.3 +/- 3.7 x 10(-2)) was higher and average LD (D') (pseudoautosomal, 4.2 +/- 0.2 x 10(-1); autosomal, 4.7 +/- 0.5 x 10(-1)) slightly lower in pseudoautosomal sequences. We also report evidence of deviation from a simple neutral model in the PAR and in autosomal loci, possibly caused by departures from demographic equilibrium, such as population growth. This study provides a snapshot of the population genetics of avian sex chromosomes at an early stage of differentiation.  相似文献   

16.
In Rosa canina (2n = 5x = 35), the pollen and ovular parents contribute, respectively, seven and 28 chromosomes to the zygote. At meiosis I, 14 chromosomes form seven bivalents and 21 chromosomes remain as univalents. Fluorescent in situ hybridization to mitotic and pollen mother cells (PMC) of R. canina showed that 10 chromosomes (two per genome) carry ribosomal DNA (rDNA) loci. Five chromosomes carry terminal 18S-5.8S-26S rDNA loci; three of these also carry paracentric 5S rDNA loci and were designated as marker chromosomes 1. Five chromosomes carry only 5S rDNA loci and three of these were designated as marker chromosomes 2. The remaining four of the 10 chromosomes with rDNA loci were individually identifiable by the type and relative sizes of their rDNA loci and were numbered separately. At PMC meiosis, two marker chromosomes 1 and two marker chromosomes 2 formed bivalents, whereas the others were unpaired. In a gynogenetic haploid of R. canina (n = 4x = 28), obtained after pollination with gamma-irradiated pollen, chromosomes at meiosis I in PMC remained predominantly unpaired. The data indicate only one pair of truly homologous genomes in R. canina. The 21 unpaired chromosomes probably remain as univalents through multiple generations and do not recombine. The long-term evolutionary consequence for the univalents is likely to be genetic degradation through accumulated mutational change as in the mammalian Y chromosome and chromosomes of asexual species. But there is no indication that univalents carry degenerate 5S rDNA families. This may point to a recent evolution of the R. canina meiotic system.  相似文献   

17.
Analysis of Y chromosome Y‐STRs has proven to be a useful tool in the field of population genetics, especially in the case of closely related populations. We collected DNA samples from 169 males of Czech origin, 80 males of Slovakian origin, and 142 males dwelling Northern Poland. We performed Y‐STR analysis of 12 loci in the samples collected (PowerPlex Y system from Promega) and compared the Y chromosome haplotype frequencies between the populations investigated. Also, we used Y‐STR data available from the literature for comparison purposes. We observed significant differences between Y chromosome pools of Czechs and Slovaks compared to other Slavic and European populations. At the same time we were able to point to a specific group of Y‐STR haplotypes belonging to an R1a haplogroup that seems to be shared by Slavic populations dwelling in Central Europe. The observed Y chromosome diversity may be explained by taking into consideration archeological and historical data regarding early Slav migrations. Am J Phys Anthropol 142:540–548, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Low levels of nucleotide diversity in mammalian Y chromosomes   总被引:10,自引:0,他引:10  
Sex chromosomes provide a useful context for the study of the relative importance of evolutionary forces affecting genetic diversity. The human Y chromosome shows levels of nucleotide diversity 20% that of autosomes, which is significantly less than expected when differences in effective population size and sex-specific mutation rates are taken into account. To study the generality of low levels of Y chromosome variability in mammalian genomes, we investigated nucleotide diversity in intron sequences of X (1.1-3.0 kb) and Y (0.7-3.5 kb) chromosome genes of five mammals: lynx, wolf, reindeer, cattle, and field vole. For all species, nucleotide diversity was found to be lower on Y than on X, with no segregating site observed in Y-linked sequences of lynx, reindeer, and cattle. For X chromosome sequences, nucleotide diversity was in the range of 1.6 x 10(-4) (lynx) to 8.0 x 10(-4) (field vole). When differences in effective population size and the extent of the male mutation bias were taken into account, all five species showed evidence of reduced levels of Y chromosome variability. Reduced levels of Y chromosome variability have also been observed in Drosophila and in plants, as well as in the female-specific W chromosome of birds. Among the different factors proposed to explain low levels of genetic variability in the sex-limited chromosome (Y/W), we note that selection is the only factor that is broadly applicable irrespective of mode of reproduction and whether there is male or female heterogamety.  相似文献   

19.
A specific cloned DNA sequence (Y-367) detects at least four loci in the euchromatic long arm and in the short arm of the human Y chromosome. Deletion mapping assigns one locus to the distal euchromatic long arm, another to a region close to the centromere on either Yq or Yp, and two additional loci to the Y short arm. Y-367 may thus be used for the rapid screening of even complex Y chromosome aberrations. This is exemplified in a 45,X male with Y chromosome material on the long arm of chromosome 10 by the detection of an inversion of a portion of Yp and by the confirmation of duplications and deletions in two individuals with duplications of part of the Y chromosome.  相似文献   

20.
Satya Prakash 《Genetics》1972,72(1):143-155
F(1) males obtained from the cross of D. pseudoobscura females from Bogotá (Colombia) x males of this species from mainland, i.e. populations from various locations in the United States and from Guatemala, are sterile. This sterility is due to genes located on the X chromosome and the autosomes; the Y chromosome is not involved. The percentage of sterile males in backcrosses can be explained by assuming an interaction between two loci on the Bogotá X chromosome and probably two loci, one each on two of the mainland autosomes. The role of founder events, inbreeding and geographic isolation in the development of reproductive isolation and the magnitude of gene differences responsible for the origin of reproductive isolation is discussed. It is concluded that founder events, inbreeding and geographic isolation play a major role in the development of reproductive isolation and that major adaptive incorporation of new alleles at a large number of structural loci is not necessary for the origin of reproductive isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号