首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cochlioquinone A1 (CoA1) was newly isolated from the culture extract of Bipolaris zeicola as a potent anti-angiogenic agent. CoA1 inhibited in vitro angiogenesis of bovine aortic endothelial cells (BAECs) such as bFGF-induced tube formation and invasion at the concentration (1 microg/mL) without cytotoxicity. Notably, CoA1 exhibited more potent inhibition activity for the growth of BAECs than that of normal and cancer cell lines investigated in this study. These results demonstrate that CoA1 is a new anti-angiogenic agent and can be developed as a new therapeutic agent for angiogenesis-related diseases.  相似文献   

2.
Development of nontoxic and biologically safe antiangiogenic agent has been highlighted as a promising way to treat angiogenesis related diseases including cancer. Herein, we isolated 4-O-methylgallic acid (4-OMGA) from the seed of Canavalia gladiata, a dietary legume, on the basis of the growth inhibitory activity for bovine aortic endothelial cells (BAECs). The compound potently inhibits endothelial cell invasion and tube formation stimulated with basic fibroblast growth factor (bFGF) at low micromolar concentrations where it shows no cytotoxicity to the cells. In addition, 4-OMGA inhibits vascular endothelial cell growth factor (VEGF) production under hypoxic condition and the production of reactive oxygen species (ROS) in the endothelial cells stimulated with VEGF. These results demonstrate that 4-OMGA is a compound having potential for an antiangiogenic agent.  相似文献   

3.
Goniodomin A (GDA) is an antifungal polyether macrolide isolated from the dinoflagellate Goniodoma pseudogoniaulax. Previous studies revealed that GDA profoundly affected cytoskeletal reorganization. We examined the effect of GDA on the angiogenic properties of vascular endothelial cells. GDA itself did not affect proliferation of, migration of, and tube formation in type I collagen gels by, bovine aortic endothelial cells (BAECs). Proliferation of BAECs stimulated by bFGF was not affected by GDA at concentrations of up to 10 nM. However, at similar concentrations, GDA significantly inhibited bFGF-induced migration and tube formation in type I collagen gels by BAECs. Actin reorganization is required for cell migration. GDA caused the perinuclear aggregation of filamentous actin and inhibited stress fiber formation in bFGF- or VEGF-stimulated BAECs and lysophosphatidic acid-stimulated HeLa cells. However, GDA did not affect stress fiber structures already formed through Gbetagamma expression or in constitutively active RhoA mutant HeLa cells. Finally, GDA inhibited forming of vasucular system in a chorioallantoic membrane. Our results indicated that GDA suppressed angiogenic properties of ECs at least in part through the inhibition of actin reorganization and inhibited angiogenesis in vivo.  相似文献   

4.
Endocannabinoids are now emerging as suppressors of key cell-signaling pathways involved in cancer cell growth, invasion, and metastasis. We have previously observed that the metabolically stable anandamide analog, 2-methyl-2'-F-anandamide (Met-F-AEA) can inhibit the growth of thyroid cancer in vivo. Our hypothesis was that the anti-tumor effect observed could be at least in part ascribed to inhibition of neo-angiogenesis. Therefore, the aim of this study was to assess the anti-angiogenic activity of Met-F-AEA, to investigate the molecular mechanisms underlying this effect and whether Met-F-AEA could antagonize tumor-induced endothelial cell sprouting. We show that Met-F-AEA inhibited bFGF-stimulated endothelial cell proliferation, in a dose-dependent manner, and also induced apoptosis, both effects reliant on cannabinoid CB1 receptor stimulation. Analyzing the signaling pathways implicated in angiogenesis, we observed that the bFGF-induced ERK phosphorylation was antagonized by Met-F-AEA, and we found that p38 MAPK was involved in Met-F-AEA-induced apoptosis. Moreover, Met-F-AEA was able to inhibit bi-dimensional capillary-like tube formation and activity of matrix metalloprotease MMP-2, a major matrix degrading enzyme. Importantly, we demonstrated that Met-F-AEA is also functional in vivo since it inhibited angiogenesis in the chick chorioallantoic neovascularization model. Finally, Met-F-AEA inhibited tumor-induced angiogenesis in a three-dimensional model of endothelial and thyroid tumor cell (KiMol) spheroids co-cultures in different 3-D polymeric matrices that resemble tumor microenvironment and architecture. Thus, our results suggest that anandamide could be involved in the control of cancer growth targeting both tumor cell proliferation and the angiogenic stimulation of the vasculature.  相似文献   

5.
Wang S  Zheng Z  Weng Y  Yu Y  Zhang D  Fan W  Dai R  Hu Z 《Life sciences》2004,74(20):2467-2478
The aqueous extracts of 24 herbs traditionally used as curing ischemic heart disease in clinic in China were screened for their in vitro angiogenic activity, another twenty-four traditionally used as anti-tumor or anti-inflammatory remedies in China were screened for their in vitro anti-angiogenic activity. The activity of angiogenesis was determined by quantitation of vessels on chick embryo chorioallantoic membrane (CAM) model and cell proliferation of cultured bovine aortic endothelial cells (BAECs). Among the herbal extracts examined, the aqueous extracts of Epimedium sagittatum, Trichosanthes kirilowii and Dalbergia odorifera showed the strong angiogenetic activity both in CAM and BAECs models; and the aqueous extracts of Berberis paraspecta, Catharanthus roseus, Coptis chinensis, Taxus chinensis, Scutellaria baicalensis, Polygonum cuspidatum and Scrophularia ningpoensis elicited significant inhibition at a concentration of 1g dry herb /ml.  相似文献   

6.
Daio-Orengedokuto is a combination drug that has inhibitory effects on HMG-CoA reductase and pancreatic lipase. Here we investigated whether Daio-Orengedokuto has effects on vascular endothelial cells. To determine its effects on blood vessels, we examined roles of Daio-Orengedokuto in cell migration, cell apoptosis and cell cycle progression over bovine aortic endothelial cells (BAECs). Interestingly, Daio-Orengedokuto was shown to work as an anti-apoptotic agent, a cell cycle progressive agent and a cell-migration inducing agent in BAECs, whereas it was known to act as a tumor suppressor in cancer cells (unpublished data). The inducing effect of Daio-Orengedokuto on cell-cycle progression and cell migration in endothelium suggests that Daio-Orengedokuto may be referred to as a drug, inducing angiogenesis, healing wounds, and (or) remodeling vascular tissue. Then we further investigated which signaling molecules were activated by Daio-Orengedokuto and found that extracellular signal-regulated kinase (ERK) phosphorylation and IkappaB degradation were stimulated by the Daio-Orengedokuto treatment in BAECs. More interestingly, pretreatment with PD compound, an ERK inhibitor, blocked the anti-apoptosis induced by Daio-Orengedokuto. In conclusion, Daio-Orengedokuto plays a role in endothelial cell proliferation via activation of MAP kinase.  相似文献   

7.
PolyP (inorganic polyphosphate) is a linear polymer of many tens or hundreds of orthophosphate residues found in a wide range of organisms, including bacteria, fungi, insects, plants and vertebrates. Despite its wide distribution in mammalian tissues and plasma, the biological functions of polyP on tumour metastasis and angiogenesis have not been previously examined. In the present study, we have shown that polyP effectively blocked in vivo pulmonary metastasis of B16BL6 cells by suppression of neovascularization, whereas it did not affect proliferation or adhesion to extracellular matrix proteins. PolyP not only inhibited bFGF (basic fibroblast growth factor)-induced proliferation and ERK (extracellular-signal-regulated kinase)/p38 MAPK (mitogen-activated protein kinase) activation of human endothelial cells, but also blocked the binding of bFGF to its cognate cell-surface receptor. Furthermore, polyP inhibited bFGF-induced in vitro and in vivo angiogenesis, suggesting that polyP possesses an anti-angiogenic activity. Since neovascularization is essential for tumour metastasis, our present findings clearly indicate that polyP has an in vivo anti-metastatic activity via its anti-angiogenic activity. Taken together with the fact that angiogenesis occurs under various normal and pathological conditions, our observations suggest that endogenous polyP may play a critical role during embryonic development, wound healing and inflammation, as well as in the progress of pathological diseases such as rheumatoid arthritis and cancer.  相似文献   

8.
9.
[6]-Gingerol, a pungent ingredient of ginger (Zingiber officinale Roscoe, Zingiberaceae), has anti-bacterial, anti-inflammatory, and anti-tumor-promoting activities. Here, we describe its novel anti-angiogenic activity in vitro and in vivo. In vitro, [6]-gingerol inhibited both the VEGF- and bFGF-induced proliferation of human endothelial cells and caused cell cycle arrest in the G1 phase. It also blocked capillary-like tube formation by endothelial cells in response to VEGF, and strongly inhibited sprouting of endothelial cells in the rat aorta and formation of new blood vessel in the mouse cornea in response to VEGF. Moreover, i.p. administration, without reaching tumor cytotoxic blood levels, to mice receiving i.v. injection of B16F10 melanoma cells, reduced the number of lung metastasis, with preservation of apparently healthy behavior. Taken together, these results demonstrate that [6]-gingerol inhibits angiogenesis and may be useful in the treatment of tumors and other angiogenesis-dependent diseases.  相似文献   

10.
11.
R-(-)-β-O-methylsynephrine (OMe-Syn) is an active compound isolated from a plant of the Rutaceae family. We conducted cell proliferation assays on various cell lines and found that OMe-Syn more strongly inhibited the growth of human umbilical vein endothelial cells (HUVECs) than that of other normal and cancer cell lines tested. In angiogenesis assays, it inhibited vascular endothelial growth factor (VEGF)-induced invasion and tube formation of HUVECs with no toxicity. The anti-angiogenic activity of OMe-Syn was also validated in vivo using the chorioallantonic membrane (CAM) assay in growing chick embryos. Expression of the growth factors VEGF, hepatocyte growth factor, and basic fibroblast growth factor was suppressed by OMe-Syn in a dose-dependent manner. Taken together, our results indicate that this compound could be a novel basis for a small molecule targeting angiogenesis.  相似文献   

12.
Traditional Chinese medicinal herbs are a rich source of compounds with reported anti-inflammatory and anti-carcinogenic effects. Growing evidence shows the codependence of chronic inflammation and angiogenesis, and the potential benefits of targeting angiogenesis in the treatment of chronic inflammation and targeting inflammation in the treatment of diseases with impaired angiogenesis. We hypothesized that the anti-inflammatory activity of the natural compounds may owe at least some of its efficacy to their anti-angiogenic activity and hence we investigated the anti-angiogenic activity of these compounds in vivo in zebrafish embryos and in vitro in human umbilical vein endothelial cells (HUVECs). Nobiletin, a polymethoxylated flavonoid from citrus fruits, showed anti-angiogenic activity in both assays. Nobiletin inhibited the formation of intersegmental vessels (ISVs) in live transgenic zebrafish embryos expressing green fluorescent protein (GFP) in the vasculature. Cell cycle analysis of dissociated zebrafish embryo cells showed that nobiletin induced G0/G1 phase accumulation in a dose-dependent manner in GFP-positive endothelial cells. Nobiletin also dose-dependently induced VEGF-A mRNA expression. In HUVECs, nobiletin inhibited endothelial cell proliferation and, to a greater extent, tube formation in a dose-dependent manner. As in the in vivo study, nobiletin induced G0/G1 cell cycle arrest in HUVECs. However, this arrest was not accompanied by an increase in apoptosis, indicating a cytostatic effect of nobiletin. This study, for the first time, identifies nobiletin as having potent anti-angiogenic activity and suggests that nobiletin has a great potential for future research and development as a cytostatic anti-proliferative agent.  相似文献   

13.
Curcumin and some of its derivatives were known as in vivo inhibitors of angiogenesis. In present study, a novel curcumin derivative, named hydrazinocurcumin (HC) was synthesized and examined for its biological activities. HC potently inhibited the proliferation of bovine aortic endothelial cells (BAECs) at a nanomolar concentration (IC(50)=520 nM) without cytotoxicity. In vivo and in vitro angiogenesis experiments showed HC as a new candidate for anti-angiogenic agent.  相似文献   

14.
Role of autophagy in angiogenesis in aortic endothelial cells   总被引:1,自引:0,他引:1  
Angiogenesis plays critical roles in the recovery phase of ischemic heart disease and peripheral vascular disease. An increase in autophagy is protective under hypoxic and chronic ischemic conditions. In the present study we determined the role of autophagy in angiogenesis. 3-Methyladenine (3-MA) and small interfering RNA (siRNA) against ATG5 were used to inhibit autophagy induced by nutrient deprivation of cultured bovine aortic endothelial cells (BAECs). Assays of BAECs tube formation and cell migration revealed that inhibition of autophagy by 3-MA or siRNA against ATG5 reduced angiogenesis. In contrast, induction of autophagy by overexpression of ATG5 increased BAECs tube formation and migration. Additionally, inhibiting autophagy impaired vascular endothelial growth factor (VEGF)-induced angiogenesis. However, inhibition of autophagy did not alter the expression of pro-angiogenesis factors such as VEGF, platelet-derived growth factor, or integrin αV. Furthermore, autophagy increased reactive oxygen species (ROS) formation and activated AKT phosphorylation. Inhibition of autophagy significantly decreased the production of ROS and activation of AKT but not of extracellular regulated kinase, whereas overexpression of ATG5 increased cellular ROS production and AKT activation in BAECs. Inhibition of AKT activation or ROS production significantly decreased the tube formation induced by ATG5 overexpression. Here we report a novel observation that autophagy plays an important role in angiogenesis in BAECs. Induction of autophagy promotes angiogenesis while inhibition of autophagy suppresses angiogenesis, including VEGF-induced angiogenesis. ROS production and AKT activation might be important mechanisms for mediating angiogenesis induced by autophagy. Our findings indicate that targeting autophagy may provide an important new tool for treating cardiovascular disease.  相似文献   

15.
Curcumin and some of its derivatives were known as in vivo inhibitors of angiogenesis. In present study, a novel curcumin derivative, named hydrazinocurcumin (HC) was synthesized and examined for its biological activities. HC potently inhibited the proliferation of bovine aortic endothelial cells (BAECs) at a nanomolar concentration (IC(50)=520 nM) without cytotoxicity. In vivo and in vitro angiogenesis experiments showed HC as a new candidate for anti-angiogenic agent.  相似文献   

16.
The present study was undertaken to observe the inhibition of angiogenesis by decursin. It was the first time to show that decursin offered strong anti-angiogenic activities under the biologically relevant growth (with serum) conditions. Decursin significantly inhibited human umbilical vein endothelial cell (HUVEC) proliferation concomitant with G1 phase cell cycle arrest. Decursin also inhibited HUVEC-capillary tube formation and invasion/migration in a dose-dependant manner which was associated with the suppression of matrix metalloproteinase (MMP) -2 and -9 activities. Decursin suppressed angiogenesis in ex vivo rat aortic ring angiogenesis model where it significantly inhibited blood capillary-network sprouting from rat aortic sections. Taken together, these findings suggested anti-angiogenic activity of decursin in biologically relevant condition, and warrants further pre-clinical studies for its potential clinical usefulness.  相似文献   

17.
In order to investigate the anti-angiogenic activity of shark TIMP-3 (sTIMP-3) in endothelial cells, angiogenic assays including in vitro invasion assay, migration assay, zymogram assay and tube formation assay were performed. We observed that the overexpression of sTIMP-3 decreased the invasive capacity by about 70%, the migratory activity by about 50% and the production of gelatinase A in bovine aortic endothelial cells (BAECs). In addition, the overexpression of sTIMP-3 interfered with the formation of capillary-like network in endothelial cells. We also examined whether sTIMP-3 shows the anti-invasive activity in cancer cells. We found that the overexpression of sTIMP-3 diminished the invasive ability of the human fibrosarcoma HT1080 cells by about 40%. Also, the production of specific gelatinases was suppressed in the cancer cells. Therefore, we propose that sTIMP-3 acts as the inhibitor of angiogenesis in endothelial cells and the suppressor of tumor invasion in human fibrosarcoma HT1080 cells.  相似文献   

18.

Background

Protein kinases play a central role in tumor progression, regulating fundamental processes such as angiogenesis, proliferation and metastasis. Such enzymes are an increasingly important class of drug target with small molecule kinase inhibitors being a major focus in drug development. However, balancing drug specificity and efficacy is problematic with off-target effects and toxicity issues.

Methodology

We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis.

Conclusions

We deduce that JK-31 reduces the growth of both human endothelial cells and human breast cancer cells in vitro. This novel synthetic molecule has broad implications for development of similar multi-kinase inhibitors with anti-angiogenic and anti-cancer properties. In silico design is an attractive and innovative method to aid such drug discovery.  相似文献   

19.
Angiogenesis is an essential step in tumor progress and metastasis. Accordingly, small molecules that inhibit angiogenesis would appear to be a promising way to cure angiogenesis-related diseases, including cancer. In the present study, we report that streptochlorin, a small molecule from marine actinomycete, exhibits a potent antiangiogenic activity. The compound potently inhibited endothelial cell invasion and tube formation stimulated with vascular endothelial cell growth factor (VEGF) at low micromolar concentrations where it showed no cytotoxicity to the cells. In addition, streptochlorin inhibited TNF-alpha-induced NF-kappaB activation in the newly developed cell-based reporter gene assay. These data demonstrate that streptochlorin is a new inhibitor of NF-kappaB activation and can be a basis for the development of novel anti-angiogenic agents.  相似文献   

20.
We investigated the anti-angiogenic effects of the water extract of HangAmDan (WEHAD), which is a crude extract of nine Korean medicinal substances of animal and plant origin. In human umbilical vein endothelial cells, WEHAD significantly inhibited bFGF-induced proliferation, adhesion, migration, and capillary tube formation. We used an antibody array to perform an analysis of signaling proteins, which showed up-regulated expression of various proteins including RAD51, RAD52, and p73, and down-regulated expression of pFAK. Blood vessel formation in a chick chorioallantoic membrane (CAM) treated with WEHAD was markedly reduced in length compared with a PBS-treated control group. These results suggest that inhibition of angiogenesis by WEHAD may be the mechanism of action for the anti-cancer effects of HAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号