首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
A greenhouse experlment was performed In order to Investigate the effects of dlfferent levels of water stress on leaf water potentlal (ψw), stomatal resistance (rs), protein content and chlorophyll (Chl) content of tomato plants (Lycoperslcon esculentum Mill. cv. Nlkita). Water stress was Induced by addlng polyethylene glycol (PEG 6 000) to the nutrlent solution to reduce the osmotlc potential (ψs). We Investlgated the behavlor of antl-oxldant enzymes, such as catalase (CAT) and superoxide dlsmutase (SOD), durlng the development of water stress. Moderate and severe water stress (i.e. ψs= -0.51 and -1.22 MPa, respectlvely) caused a decrease In ψw for all treated (water-stressed) plants compared with control plants, wlth the reductlon belng more pronounced for severely stressed plants. In addltion, rs was slgnlflcantly affected by the Induced water stress and a decrease in leaf soluble protelns and Chl content was observed. Whereas CAT actlvlty remained constant, SOD actlvlty was increased in water-stressed plants compared wlth unstressed plants. These results Indicate the possible role of SOD as an anti-oxidant protector system for plants under water stress condltlons. Moreover, It suggests the possibllity of using this enzyme as an addltional screening crlterlon for detecting water stress in plants.  相似文献   

2.
Malate efflux from leaf cells of the Crassulacean acid metabolism plant Kalanchoë daigremontiana Hamet et Perrier was studied using leaf slices submerged in experimental solutions. Leaves were harvested at the end of the dark phase and therefore contained high malate levels. Water potentials of solutions were varied between 0 and −5 bar using mannitol (a slowly permeating solute) and ethylene glycol (a rapidly permeating solute), respectively. Mannitol solutions of water potentials down to −5 bar considerably reduced malate efflux. The slowly permeating solute mannitol reduces both water potential and turgor potential of the cells. The water potential of a mannitol solution of −5 bar is just above plasmolyzing concentration. Malate efflux in ethylene glycol at −5 bar was only slightly smaller than at 0 bar, and much higher than in mannitol at −5 bar. Tissues in rapidly permeating ethylene glycol would have turgor potentials similar to tissues in 0.1 mm CaSO4. The results demonstrate that malate efflux depends on turgor potential rather than on water potential of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号