首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transition from mitosis to meiosis is unique to germ cells. In murine embryonic ovaries and juvenile testes, retinoic acid (RA) induces meiosis via the stimulated by retinoic acid gene 8 (Stra8), but its molecular pathway requires elucidation. We present genetic evidence in vivo and in vitro that neuregulins (NRGs) are essential for the proliferation of spermatogonia and the initiation of meiosis. Tamoxifen (TAM) was injected into 14-day post-partum (dpp) Sertoli cell-specific conditional Nrg1(Ser-/-) mutant mice. TAM induced testis degeneration, suppressed BrdU incorporation into spermatogonia and pre-leptotene primary spermatocytes, and decreased and increased the number of STRA8-positive and TUNEL-positive cells, respectively. In testicular organ cultures from 5-6 dpp wild-type mice and cultures of their re-aggregated spermatogonia and Sertoli cells, FSH, RA [all-trans-retinoic acid (ATRA), AM580, 9-cis-RA] and NRG1 promoted spermatogonial proliferation and meiotic initiation. However, TAM treatment of testicular organ cultures from the Nrg1(Ser-/-) mutants suppressed spermatogonial proliferation and meiotic initiation that was promoted by FSH or AM580. In re-aggregated cultures of purified spermatogonia, NRG1, NRG3, ATRA and 9-cis-RA promoted their proliferation and meiotic initiation, but neither AM580 nor FSH did. In addition, FSH, RAs and NRG1 promoted Nrg1 and Nrg3 mRNA expression in Sertoli cells. These results indicate that in juvenile testes RA and FSH induced meiosis indirectly through Sertoli cells when NRG1 and NRG3 were upregulated, as NRG1 amplified itself and NRG3. The amplified NRG1 and NRG3 directly induced meiosis in spermatogonia. In addition, ATRA and 9-cis-RA activated spermatogonia directly and promoted their proliferation and eventually meiotic initiation.  相似文献   

2.
3.
We previously showed that mammalian FSH stimulates the proliferation of newt spermatogonia and induces their differentiation into primary spermatocytes in vitro. In the current study, to examine a possibility that stem cell factor (SCF) is involved in the proliferation of newt spermatogonia and/or their differentiation into primary spermatocytes, human recombinant SCF (rhSCF) was added to organ culture of testicular fragments. rhSCF was found to stimulate the spermatogonial proliferation and the spermatogonia progressed to the seventh generation that is the penultimate stage before primary spermatocyte stage. However, the spermatogonia did not differentiate into primary spermatocytes, but instead died of apoptosis. These results indicate that rhSCF promotes the proliferation of newt spermatogonia, but not the initiation of meiosis.  相似文献   

4.
5.
We previously cultured fragments of newt testes in chemically defined media and showed that mammalian follicle-stimulating hormone (FSH) stimulates proliferation of spermatogonia as well as their differentiation into primary spermatocytes (Ji et al., 1992; Abe and Ji, 1994). Next, we indicated in cultures composed of spermatogonia and somatic cells (mainly Sertoli cells) that FSH stimulates germ cell proliferation via Sertoli cells (Maekawa et al., 1995). However, the spermatogonia did not differentiate into primary spermatocytes, but instead died. In the present study, we embedded large reaggregates of spermatogonia and somatic cells (mainly Sertoli cells) within a collagen matrix and cultured the reaggregates on a filter that floated on chemically defined media containing FSH; in this revised culture system, spermatogonia proliferated and differentiated into primary spermatocytes. The viability and percentage of germ cells differentiating into primary spermatocytes were proportional to the percentage of somatic cells in the culture, indicating that differentiation of spermatogonia into primary spermatocytes is mediated by Sertoli cells.  相似文献   

6.
Abé S 《Zoological science》2004,21(7):691-704
Meiosis is an event that occurs prerequisitely and specifically in gametogenesis. However, the mechanisms of conversion from mitosis to meiosis are poorly understood. I will review the results so far obtained by us using newt testis as a model system, and discuss about the extrinsic mechanism(s) controlling the conversion from mitosis to meiosis. In the newt spermatogonia enter meiosis in the 8th generation after 7 mitotic divisions. We developed organ and reaggregate culture systems with a chemically defined medium in which porcine follicle-stimulating hormone (pFSH) promotes spermatogonial proliferation and differentiation into primary spermatocytes. Human recombinant stem cell factor (RhSCF) in vitro stimulates the spermatogonial proliferation and progression to the 7th generation, but not the differentiation into primary spermatocytes; instead they die of apoptosis. The reason why rhSCF does not stimulate meiosis entrance seems to be due to the low level expression of c-kit protein at the 7th generation of spermatogonia. Ovine PRL induces apoptosis in the 7th generation of spermatogonia in vivo and in vitro. Incubation of newts at low temperature causes spermatogonial apoptosis by the elevation of plasma PRL titer. In the absence of FSH in organ culture spermatogonia can progress until the 7th generation, but the 8th generation never appear due to the apoptosis. Altogether there seems to be a regulatory checkpoint for entrance into meiosis in the 7th generation. Spermatogonia could circumvent the checkpoint by the influence of some factor(s) produced by Sertoli cells upon activation by FSH. Trial to isolate factor(s) responsible for the meiosis-initiation is now underway.  相似文献   

7.
卵泡刺激素和表皮生长因子对小鼠精原细胞增殖的影响   总被引:2,自引:0,他引:2  
利用生殖细胞-体细胞体外无血清共培养模型研究了卵泡刺激素(FSH)和表皮生长因子(EGF)对小鼠A型精原细胞增殖的影响。精原细胞在ITS培养液(添加胰岛素、转铁蛋白和亚硒酸钠的DMEM)中培养24h后进行c-kit免疫细胞化学鉴定和EGF及其受体(EGFR)免疫细胞化学检测,72h后测定其形成集落数的情况。结果表明:ITS培养液能维持生殖细胞的活性,增殖细胞核抗原(PCNA)的表达增高。A型精原细胞呈c-kit阳性,EGF和EGFR主要表达于精原细胞。单独的FSH(1~100ng/ml)或EGF(1~10ng/ml)显著促进精原细胞集落数的增加。此外,EGF(0.1ng/ml)联合FSH(10ng/ml)具有加性效应,但更高剂量的EGF(1~10ng/ml)则降低了FSH的刺激作用。结果说明FSH可联合适量的EGF促进精原细胞的增殖。  相似文献   

8.
We previously reported that mammalian FSH induced differentiation of secondary spermatogonia into primary spermatocytes in organ culture of newt testicular fragments, whereas in medium lacking FSH primary spermatocytes never appeared. Here, we investigated why spermatogonia fail to form primary spermatocytes in the absence of FSH. Spermatogonia maintained proliferative activity and viability at about half the level of those cultured in the presence of FSH, progressed into the seventh generation, but became moribund during the G2/M phase. Thus, the eighth generation of spermatogonia never appeared, suggesting that cell death is the chief reason why primary spermatocytes fail to form in the absence of FSH. The presence of Dmc1, a molecular marker for the spermatocyte stage, confirmed our microscopic observations that spermatogonia differentiated into primary spermatocytes in the presence of FSH. Thus, FSH is indispensable for the completion of the last spermatogonial mitosis, a prerequisite for the conversion of germ cells from mitosis to meiosis. Because prolactin induced apoptosis in spermatogonia during the seventh generation, we propose that a checkpoint exists for the initiation of meiosis in the seventh generation whereby spermatogonia enter meiosis when the concentration ratio of FSH to prolactin is high but fail to do so when the ratio is low.  相似文献   

9.
In order to elucidate essential factors responsible for the initiation and promotion of spermatogenesis, we developed an organ culture system with a chemically defined medium. When newt testes fragments, consisting of somatic cells and germ cells almost exclusively secondary spermatogonia, were cultured in control medium for three weeks, most of the testicular cysts still contained only secondary spermatogonia. On the other hand, in the medium supplemented with various kinds of hormones and vitamins primary spermatocytes (zygotene-pachytene) appeared in about 60% of the cysts by the second week. Selective removal of specific hormones and vitamins revealed that follicle-stimulating hormone (FSH) alone was indispensable and sufficient for the differentiation of secondary spermatogonia to primary spermatocytes. Neither the addition of luteinizing hormone (LH) nor androgens (testosterone and 5α-dihydrotestosterone) to the control medium stimulated differentiation. Consistent with these findings was the fact that radioreceptor assays revealed high affinity specific binding sites for FSH but none for LH. Since our ultrastructural studies revealed a major loss of contact between spermatogonia and Sertoli cells following exposure to FSH, we suggest that FSH triggers differentiation of spermatogonia by acting on Sertoli cells which in turn act on spermatogonia.  相似文献   

10.
 In order to isolate genes whose expression is up-regulated after the initiation of meiosis, we screened a cDNA expression library of newt testes with antiserum against homogenates of testes derived from the spermatogonial and spermatocyte stages. We report the isolation of spermatocyte-specific cDNA clones encoding a newt homologue of the calcium-dependent phospholipid-binding protein, annexin V. Northern blot analysis showed that newt annexin V mRNA was 1.7 kb in length and was expressed strongly in testes, but weakly in other organs. In situ hybridization revealed that the expression of newt annexin mRNA was barely observed in spermatogonia, but increased significantly in leptotene-zygotene primary spermatocytes and reached a maximum level in pachytene spermatocytes and round spermatids. The newt annexin V cDNA predicted a 323-amino acid protein and had a 68% homology to human annexin V. The predicted amino acid sequence contained a conserved 4-fold internal repeat of approximately 70 residues like other annexin proteins. Immunoblot analysis using the monoclonal antibody against newt annexin V showed that the protein was expressed scarcely in spermatogonia but was abundantly expressed in stages from primary spermatocytes to spermatids; this pattern was consistent to that of the mRNA. Immunohistochemical analysis revealed that newt annexin V was localized in the cytoplasm of the spermatogenic cells, but not in somatic cells such as Sertoli cells or pericystic cells. These results indicate that the expression of newt annexin V is up-regulated in the spermatogenic cells after the initiation of meiosis and suggest that newt annexin V plays an important role in spermatogenesis. Received: 8 December 1995 / Accepted: 12 February 1996 Edited by H. Shimada/D. Tautz  相似文献   

11.
In the cultivated male Japanese eel, spermatogonia are the only germ cells present in the testis. Using a newly developed organ culture system, we obtained evidence that human chorionic gonadotropin (HCG) can induce the entire process of spermatogenesis, in vitro, from spermatogonia to spermatozoa within 24 days. The HCG-induced spermatogenesis in vitro was accompanied by a marked activation of Sertoli cells and Leydig cells, occurring prior to the beginning of spermatogonial proliferation. These results indicate that gonadotropin triggers spermatogenesis in the Japanese eel and further suggest that this effect of gonadotropin is mediated through the actions of testicular somatic cells.  相似文献   

12.
13.
Spermatogonial stem cells (SSC) are a small self-renewing subpopulation of type A spermatogonia, which for the rest are composed of differentiating cells with a very similar morphology. We studied the development of primary co-cultures of prepubertal bovine Sertoli cells and A spermatogonia and the effect of glial cell line-derived neurotropic factor (GDNF) on the numbers and types of spermatogonia, the formation of spermatogonial colonies and the capacity of the cultured SSC to colonize a recipient mouse testis. During the first week of culture many, probably differentiating, A spermatogonia entered apoptosis while others formed pairs and chains of A spermatogonia. After 1 week colonies started to appear that increased in size with time. Numbers of single (A(s)) and paired (A(pr)) spermatogonia were significantly higher in GDNF treated cultures at Days 15 and 25 (P < 0.01 and 0.05, respectively), and the ratio of A(s) to A(pr) and spermatogonial chains (A(al)) was also higher indicating enhanced self-renewal of the SSC. Furthermore, spermatogonial outgrowths in the periphery of the colonies showed a significantly higher number of A spermatogonia with a more primitive morphology under the influence of GDNF (P < 0.05). Spermatogonial stem cell transplantation experiments revealed a 2-fold increase in stem cell activity in GDNF treated spermatogonial cultures (P < 0.01). We conclude that GDNF rather than inducing proliferation, enhances self-renewal and increases survival rates of SSC in the bovine spermatogonial culture system.  相似文献   

14.
We have demonstrated a role for activin A, follistatin, and FSH in male germ cell differentiation at the time when spermatogonial stem cells and committed spermatogonia first appear in the developing testis. Testis fragments from 3-day-old rats were cultured for 1 or 3 days with various combinations of these factors, incubated with bromodeoxyuridine (BrdU) to label proliferating cells, and then processed for stereological analysis and detection of BrdU incorporation. Gonocyte numbers were significantly elevated in cultures treated with activin, while the combination of FSH and the activin antagonist, follistatin, increased the proportion of spermatogonia in the germ cell population after 3 days. All fragment groups treated with FSH contained a significantly higher proportion of proliferating Sertoli cells, while activin and follistatin each reduced Sertoli cell division. In situ hybridization and immunohistochemistry on normal rat testes demonstrated that gonocytes, but not spermatogonia, contain the activin beta(A) subunit mRNA and protein. In contrast, gonocytes first expressed follistatin mRNA and protein at 3 days after birth, concordant with the transition of gonocytes to spermatogonia. Collectively, these data demonstrate that germ cells have the potential to regulate their own maturation through production of endogenous activin A and follistatin. Sertoli cells were observed to produce the activin/inhibin beta(A) subunit, the inhibin alpha subunit, and follistatin, demonstrating that these cells have the potential to regulate germ cell maturation as well as their own development. These findings indicate that local regulation of activin bioactivity may underpin the coordinated development of germ cells and somatic cells at the onset of spermatogenesis.  相似文献   

15.
Recombinant human insulin-like growth factors (rhIGF-I and rhIGF-II) and human insulin promoted the differentiation of spermatogonia into primary spermatocytes in newt testes fragments cultured in a chemically defined medium. The biological potency for promoting differentiation was dose-dependent for all the ligands with the highest potency displayed by IGF-I, followed by IGF-II, and the least by insulin. The difference in potency was larger between IGF-II and insulin than that between IGF-I and IGF-II. This order of biological potency was in good accordance with the order of affinity in binding specificity of [125I]IGF-I to the testicular membrane fractions: IGF-II and insulin competed the binding of [125I]IGF-I only at concentrations 20-fold and 100-fold higher, respectively, than IGF-I. Specific binding was observed in both somatic cells (mostly Sertoli cells) and germ cells (spermatogonia and primary spermatocytes), though the binding to somatic cells was about 2.7 times higher than that to germ cells. These results indicate that (1) specific binding sites for IGF-I are present in the newt testes, (2) IGF-II and insulin also bind to these receptors but to a lesser degree, and (3) IGF-II and insulin as well as IGF-I promote spermatogonial differentiation into primary spermatocytes by binding to the IGF-I receptor.  相似文献   

16.
The conversion from mitosis to meiosis is a phenomenon specific to the cellular progenitors of gametes; however, the mechanism or mechanisms responsible for this conversion are poorly understood. To this end, some morphological and molecular changes that occur during the initiation of meiosis in newt spermatogenesis are reported in the present paper. In situ morphologic studies revealed that spermatogonial stages comprise two phases: early mitotic generations (G1-G4) and late mitotic generations (G5-G8). Morphologic conversion from secondary spermatogonia to primary spermatocytes occurred during the intermediate stage of premeiotic DNA replication. The expression of proliferating cell nuclear antigen (PCNA), a DNA polymerase-delta auxiliary protein, in spermatogonia was weak in G1, highest during DNA synthesis (S), decreased in G2 and was not detectable in dividing cells. Complementary DNA for newt homologs of DMC1 (disrupted meiotic cDNA), which is an Escherichia coli RecA-like protein specifically active during meiosis, were isolated. The newt Dmc1 mRNA was first expressed significantly during the preleptotene stage and this continued into the spermatid stage. These observations present a basis for investigating the mechanism(s) controlling the conversion of newt spermatogonial cells from mitosis to meiosis.  相似文献   

17.
18.
19.
The nature of the spermatogenic arrest in cryptorchid C57Bl mice and in jsd/jsd and Sl17H/Sl17H mutant mice was identified by studying whole mounts of seminiferous tubules. In all three types of mice, virtually only A spermatogonia were found, topographically arranged in clones of 1 to 16 (rarely more) cells. These clonal sizes are typical for undifferentiated spermatogonia. The proportion of these cells lying in chains of more than 2 cells (50-70%) was comparable to that seen in epithelial stages VII-VIII in the normal epithelium. It is concluded that in all three types of mice, spermatogenesis is arrested at the point where the undifferentiated A spermatogonia, specifically A(al) spermatogonia, differentiate into the first generation of the differentiating-type spermatogonia, the A1 spermatogonia. The remaining A spermatogonia were proliferating, but no accumulation of spermatogonia was present, as spermatogonial apoptosis also took place. Spermatogonial clones of all sizes were seen to undergo apoptosis, but there were relatively many large apoptotic clones, indicating that the clones became more vulnerable when they became larger. In contrast to what is seen in the normal epithelium, odd-numbered clones, not composed of 2(n) cells, were present, as well as clumps of 2 or more spermatogonial nuclei in the same cytoplasm, in all three types of mice. This indicates a lack of integrity of spermatogonial clones, also observed in other situations with a relative paucity of cells on the basal membrane. It is concluded that the differentiation of the undifferentiated spermatogonia, affected in all three types of mice as well as in vitamin A-deficient animals, is a rather vulnerable point in the spermatogenic developmental pathway.  相似文献   

20.
The present study was aimed at developing a method for long-term culture of bovine type A spermatogonia. Testes from 5-mo-old calves were used, and pure populations of type A spermatogonia were isolated. Cells were cultured in minimal essential medium (MEM) or KSOM (potassium-rich medium prepared according to the simplex optimization method) and different concentrations of fetal calf serum (FCS) for 2-4 wk at 32 degrees C or 37 degrees C. Culture in MEM resulted in more viable cells and more proliferation than culture in KSOM, and better results were obtained at 37 degrees C than at 32 degrees C. After 1 wk of culture in the absence of serum, only 20% of the cells were alive. However, in the presence of 2.5% FCS, approximately 80% of cells were alive and proliferating. Higher concentrations of FCS only enhanced numbers of somatic cells. In long-term culture, spermatogonia continued to proliferate, and eventually, type A spermatogonial colonies were formed. The majority of colonies consisted mostly of groups of cells connected by intercellular bridges. Most of the cells in these colonies underwent differentiation because they were c-kit positive, and ultimately, cells with morphological and molecular characteristics of spermatocytes and spermatids were formed. Occasionally, large round colonies consisting of single, c-kit-negative, type A spermatogonia (presumably spermatogonial stem cells) were observed. For the first time to our knowledge, a method has been developed to allow proliferation and differentiation of highly purified type A spermatogonia, including spermatogonial stem cells during long-term culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号