首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized the interaction of bovine pancreatic deoxyribonuclease I (DNase I) with the filamentous (F-)actin of red cell membrane skeletons stabilized with phalloidin. The hydrolysis of [3H]DNA was used to assay DNase I. We found that DNase I bound to a homogenous class of approximately equal to 2.4 X 10(4) sites/skeleton with an association rate constant of approximately 1 X 10(6) M-1 S-1 and a KD of 1.9 X 10(-9) M at 20 degrees C. Phalloidin lowered the dissociation constant by approximately 1 order of magnitude. The DNase I which sedimented with the skeletons was catalytically inactive but could be reactivated by dissociation from the actin. Actin and DNA bound to DNase I in a mutually exclusive fashion without formation of a ternary complex. Phalloidin-treated red cell F-actin resembled rabbit muscle G-actin in all respects tested. Since the DNase I binding capacity of the skeletons corresponded to the number of actin protofilaments previously estimated by other methods, it seemed likely that the enzyme binding site was confined to one end of the filament. We confirmed this premise by showing that elongating the red cell filaments with rabbit muscle actin monomers did not appreciably add to their capacity to bind or inhibit DNase I. Saturation of skeletons with cytochalasin D or gelsolin, avid ligands for the barbed end of actin filaments, did not reduce their binding of DNase I. Furthermore, neither cytochalasin D nor DNase I alone blocked all of the sites for addition of monomeric pyrene-labeled rabbit muscle G-actin to phalloidin-treated skeletons; however, a combination of the two agents did so. In the presence of phalloidin, the polymerization of 300 nM pyrenyl actin on nuclei constructed from 5 nM gelsolin and 25 nM rabbit muscle G-actin was completely inhibited by 35 nM DNase I but not by 35 nM cytochalasin D. We conclude that DNase I associates uniquely with and caps the pointed (slow-growing or negative) end of F-actin. These results imply that the amino-terminal, DNase I-binding domain of the actin protomer is oriented toward the pointed end and is buried along the length of the actin filament.  相似文献   

2.
The exchange of actin filament subunits for unpolymerized actin or for subunits in other filaments has been quantitated by three experimental techniques: fluorescence energy transfer, incorporation of 35S-labeled actin monomers into unlabeled actin filaments, and exchange of [14C]ATP with filament-bound ADP. In the fluorescence energy transfer experiments, actin labeled with 5-(iodoacetamidoethyl)aminonaphthalene- 1-sulfonic acid (IAENS) served as the fluorescent energy donor, and actin labeled with either fluorescein-5-isothiocyanate (FITC) or fluorescein-5-maleimide (FM) served as the energy acceptor. Fluorescent- labeled actins from Dictyostelium amoebae and rabbit skeletal muscle were very similar to their unlabeled counterparts with respect to critical actin concentration for filament assembly, assembly rate, ATP hydrolysis upon assembly, and steady-state ATPase. As evidenced by two different types of fluorescence energy transfer experiments, less than 5% of the actin filament subunits exchanged under a variety of buffer conditions at actin concentrations greater than 0.5 mg/ml. At all actin concentrations limited exchange to a plateau level occurred with a half- time of about 20 min. Nearly identical results were obtained when exchange was quantitated by incorporation of 35S-labeled Dictyostelium actin monomers into unlabeled muscle actin or Dictyostelium actin filaments. Furthermore, the proportion of filament-bound ADP which exchanged with [14C]-ATP was nearly the same as actin subunit exchange measured by fluorescence energy transfer and 35S-labeled actin incorporation. These experiments demonstrate that under approximately physiologic ionic conditions only a small percentage of subunits in highly purified skeletal muscle or Dictyostelium F-actin participate in exchange.  相似文献   

3.
The aim of this study was to isolate and to characterize actin from the carp liver cytosol and to examine its ability to polymerize and interact with bovine pancreatic DNase I. Carp liver actin was isolated by ion-exchange chromatography, followed by gel filtration and a polymerization/depolymerization cycle or by affinity chromatography using DNase I immobilized to agarose. The purified carp liver actin was a cytoplasmic beta-actin isoform as verified by immunoblotting using isotype specific antibodies. Its isoelectric point (pI) was slightly higher than the pI of rabbit skeletal muscle alpha-actin. Polymerization of purified carp liver actin by 2 mM MgCl(2) or CaCl(2) was only obtained after addition of phalloidin or in the presence of 1 M potassium phosphate. Carp liver actin interacted with DNase I leading to the formation of a stable complex with concomitant inhibition of the DNA degrading activity of DNase I and its ability to polymerize. The estimated binding constant (K(b)) of carp liver actin to DNase I was calculated to be 1.85x10(8) M(-1) which is about 5-fold lower than the affinity of rabbit skeletal muscle alpha-actin to DNase I.  相似文献   

4.
Actin from Saccharomyces cerevisiae.   总被引:17,自引:1,他引:16       下载免费PDF全文
Inhibition of DNase I activity has been used as an assay to purify actin from Saccharomyces cerevisiae (yeast actin). The final fraction, obtained after a 300-fold purification, is approximately 97% pure as judged by sodium dodecyl sulfate-gel electrophoresis. Like rabbit skeletal muscle actin, yeast actin has a molecular weight of about 43,000, forms 7-nm-diameter filaments when polymerization is induced by KCl or Mg2+, and can be decorated with a proteolytic fragment of muscle myosin (heavy meromyosin). Although heavy meromyosin ATPase activity is stimulated by rabbit muscle and yeast actins to approximately the same Vmax (2 mmol of Pi per min per mumol of heavy meromyosin), half-maximal activation (Kapp) is obtained with 14 micro M muscle actin, but requires approximately 135 micro M yeast actin. This difference suggests a low affinity of yeast actin for muscle myosin. Yeast and muscle filamentous actin respond similarly to cytochalasin and phalloidin, although the drugs have no effect on S. cerevisiae cell growth.  相似文献   

5.
We describe the purification of Ca2+-dependent actin modulator proteins from bovine thyroid using DNase I affinity chromatography and diethylaminoethylcellulose chromatography. The 40K actin modulator has been purified to 98% homogeneity. It is a single polypeptide chain with a molecular weight of approximately 40 000 and an isoelectric point of 8.1. Its amino acid composition is different from previously described actin-associated proteins and thyroid actin. On the basis of the centrifugation assay and the DNase I inhibition assay, the actin complexed with the 40K protein is G-actin in its conformation rather than F-actin oligomers. Substoichiometric concentrations of the 40K protein rapidly inhibit actin polymerization in the presence of physiological concentrations of Ca2+ and Mg2+. An 80K actin modulator also has been purified to 98% homogeneity. It is a single polypeptide chain with a molecular weight of approximately 80 000 and an isoelectric point of 6.35-7.0. Its amino acid composition is different from those of villin, gelsolin, and leukocyte actin polymerization inhibitor. On the basis of the DNase inhibition assay and the centrifugation assay, the nonprecipitable actin associated with the 80K protein was F-actin in its conformation. The 80K protein acts very efficiently as a Ca2+-dependent nucleator for actin assembly and reduces its viscosity. In addition to the 40K and 80K actin modulators, 91K and 95K actin-associated proteins were partially purified. The 91K-95K fraction has similar activity to the 80K protein regarding precipitation of F-actin. The 125I-G-actin polyacrylamide gel overlay technique [Snabes, M. C., Boyd, A.E., & Bryan, J. (1981) J. Cell Biol. 90, 809-812] revealed that both the 91K and 95K proteins bind 125I-actin after sodium dodecyl sulfate (NaDodSO4) electrophoresis while the 80K and 40K proteins do not. Thyroid 91K protein comigrated with a human platelet 91K actin binding protein on NaDodSO4 gels and may be similar to macrophage gelsolin. The 95K protein may be similar to villin, the intestinal cytoskeletal protein.  相似文献   

6.
The ability of myosin subfragment 1 to interact with monomeric actin complexed to sequestering proteins was tested by a number of different techniques such as affinity absorption, chemical cross-linking, fluorescence titration, and competition procedures. For affinity absorption, actin was attached to agarose immobilized DNase I. Both chymotryptic subfragment 1 isoforms (S1A1 and S1A2) were retained by this affinity matrix. Fluorescence titration employing pyrenyl-actin in complex with deoxyribonuclease I (DNase I) or thymosin beta4 demonstrated S1 binding to these actin complexes. A K(D) of 5 x 10(-8) M for S1A1 binding to the actin-DNase I complex was determined. Fluorescence titration did not indicate binding of S1 to actin in complex with gelsolin segment 1 (G1) or vitamin D-binding protein (DBP). However, fluorescence competition experiments and analysis of tryptic cleavage patterns of S1 indicated its interaction with actin in complex with DBP or G1. Formation of the ternary DNase I-acto-S1 complex was directly demonstrated by sucrose density sedimentation. S1 binding to G-actin was found to be sensitive to ATP and an increase in ionic strength. Actin fixed in its monomeric state by DNase I was unable to significantly stimulate the Mg2+-dependent S1-ATPase activity. Both wild-type and a mutant of Dictyostelium discoideum myosin II subfragment 1 containing 12 additional lysine residues within an insertion of 20 residues into loop 2 (K12/20-Q532E) were found to also interact with actin-DNase I complex. Binding of the K12/20-Q532E mutant to the actin-DNase I complex occurred with higher affinity than wild-type S1 and was less sensitive to mono- and divalent cations.  相似文献   

7.
Apoptosis is essential in embryonic development, clonal selection of cells of the immune system and in the prevention of cancer. Apoptotic cells display characteristic changes in morphology that precede the eventual fragmentation of nuclear DNA resulting in cell death. Current evidence implicates DNase I as responsible for hydrolysis of DNA during apoptosis. In vivo, it is likely that cytoplasmic actin binds and inhibits the enzymatic activity and nuclear translocation of DNase I and that disruption of the actin-DNase I complex results in activation of DNase I. In this report we demonstrate that the N-terminal fragment of gelsolin (N-gelsolin) disrupts the actin-DNase I interaction. This provides a molecular mechanism for the role of the N-gelsolin in regulating DNase I activity. We also show that cofilin stabilises the actin-DNase I complex by forming a ternary complex that prevents N-gelsolin from releasing DNase I from actin. We suggest that both cofilin and gelsolin are essential in modulating the release of DNase I from actin.  相似文献   

8.
W Kabsch  H G Mannherz    D Suck 《The EMBO journal》1985,4(8):2113-2118
The shape of an actin subunit has been derived from an improved 6 A map of the complex of rabbit skeletal muscle actin and bovine pancreatic DNase I obtained by X-ray crystallographic methods. The three-dimensional structure of DNase I determined independently at 2.5 A resolution was compared with the DNase I electron density in the actin:DNase map. The two structures are very similar at 6 A resolution thus leading to an unambiguous identification of actin as well as DNase I electron density. Furthermore the correct hand of the actin structure is determined from the DNase I atomic structure. The resolution of the actin structure was extended to 4.5 A by using a single heavy-atom derivative and the knowledge of the atomic coordinates of DNase I. The dimensions of an actin subunit are 67 A X 40 A X 37 A. It consists of a small and a large domain, the small domain containing the N terminus. Actin is an alpha,beta-protein with a beta-pleated sheet in each domain. These sheets are surrounded by several alpha-helices, comprising at least 40% of the structure. The phosphate peak of the adenine nucleotide is located between the two domains. The complex of actin and DNase I as found in solution (i.e., the actin:DNase I contacts which do not depend on crystal packing) was deduced from a comparison of monoclinic with orthorhombic crystals. Residues 44-46, 51, 52, 60-62 of DNase I are close to a loop region in the small domain of actin. At a distance of approximately 15 A there is a second contact in the large domain in which Glu13 of DNase I is involved. A possible binding region for myosin is discussed.  相似文献   

9.
A 36 kDa fragment of rabbit skeletal muscle actin resistant to further proteolytic breakdown was obtained with a new bacterial protease. This fragment was the only cleavage product obtained from native actin whereas proteolysis of heat-inactivated actin was unlimited. The 36 kDa fragment failed to polymerize and to inhibit DNase I activity. Binding to DNase I protects actin against proteolysis by protease. The results on actin proteolysis by different proteases are compared.  相似文献   

10.
Isolation and characterization of actin from Entamoeba histolytica   总被引:6,自引:0,他引:6  
Actin has been identified and purified partially from trophozoites of Entamoeba histolytica HMI-IMSS by a procedure that minimizes proteolysis. In cellular extracts, Entamoeba actin would copolymerize with muscle actin, but would not bind to DNase I or form microfilaments. Fractionation of the extracts by DEAE-cellulose and Sephadex G-150 chromatography yielded a purified actin that would copolymerize with rabbit skeletal muscle actin or polymerize alone into long filaments at 24 degrees C upon addition of 100 mM KC1 and 2 mM MgCl2. These filaments are not cold-stable and will depolymerize at 4 degrees C in 1 or 2 h. Entamoeba actin filaments bind phallotoxin with the same affinity as muscle actin and decorate with rabbit skeletal muscle heavy meromyosin. Entamoeba actin filaments activate the Mg2+ ATPase of heavy meromyosin to the same Vmax as muscle actin, but the Kapp is 2.8 times higher. Entamoeba actin is a single species with a slightly higher molecular weight than muscle actin (45,000) and a more acidic pI (5.4). The purified actin does not bind to DNase I, produce inhibition of the enzymatic activity, or block the binding of muscle actin. Comparison of the peptides obtained by limit digest with protease V8 from Staphylococcus aureus shows sequences with common mobility between alpha-actin and Entamoeba actin, but additional peptides are present which may account for the different properties of the Entamoeba actin. Finally, in vitro translation of mRNA from trophozoites produces a single polypeptide equivalent to the molecule purified from Entamoeba extracts.  相似文献   

11.
Actin-binding proteins were assayed in various tissues using an 125I-actin overlay procedure. Four major G actin-binding proteins of 90000, 65000, 58000 and 40000 Mr have been identified. The 90K protein is present in all tissues and binds labelled actin in a calcium-sensitive manner with binding increasing 3-4-fold in the presence of Ca2+. The distribution of the 58K and 65K protein which are not Ca2+-sensitive was more variable. These proteins were present in different ratios in different tissues. 125I-actin binding to all four actin-binding proteins is specific and can be displaced by preincubation of the gels with unlabelled actin. The interaction of actin with these proteins does not appear to involve ionic forces, since binding is not diminished by varying the salt concentration. Skeletal muscle glycolytic enzymes, the lens crystallins and the histones also bind 125I-actin. This binding cannot be displaced by preincubation with unlabelled actin and is presumably non-specific. The calcium sensitivity of two highly purified actin-binding proteins, the 90K human platelet protein and villin was compared using 125I-actin. The platelet 90K protein binds actin at less than 10(-7) M free calcium, but detectable binding to villin does not occur below 10(-6) M free calcium. The ubiquity of these actin-binding proteins is clear and we conclude that the calcium-sensitive 90K actin-binding protein in all of these tissues is the same as the platelet protein.  相似文献   

12.
《FEBS letters》1986,198(2):221-224
Scallop adductor muscle β-like isoactin differs from rabbit skeletal muscle α-actin in the rate, extent and critical concentration of polymerization. The difference is temperature- and [KCl]-dependent. In the presence of DNase I scallop actin was shown to be depolymerized more rapidly than rabbit actin. It was suggested that the polymers formed by β-actin are less stable than those formed by α-actin.  相似文献   

13.
In this study, the presence of actin in cultured trypanosomatids was investigated using polyclonal antibodies to heterologous actin. Polyclonal antisera to rabbit muscle actin and a monospecific anti-actin antibody react with a 43-kDa polypeptide in extracts of Trypanosoma cruzi, Herpetomonas samuelpessoai and Leishmania mexicana amazonensis on protein immunoblots. The 43-kDa polypeptide co-migrates with skeletal muscle actin and is retained within trypanosomatid cytoskeletons. Attempts to isolate H. samuelpessoai actin through DNase I affinity chromatography showed that the 43-kDa polypeptide did not bind to the column. Instead, low yields of a 47-kDa polypeptide were obtained indicating that the trypanosomatid actin displays unusual DNase I binding behavior when compared to actins from higher eukaryotes. Immunofluorescence studies confirmed that cytoskeletons retain the actin-like protein. In H. samuelpessoai , actin is localized in the region close to the flagellum, whereas in T. cruzi it is more homogeneously distributed. The data presented here show that trypanosomatid actin displays biochemical characteristics similar to actins of other protozoa.  相似文献   

14.
In this study, the presence of actin in cultured trypanosomatids was investigated using polyclonal antibodies to heterologous actin. Polyclonal antisera to rabbit muscle actin and a monospecific anti-actin antibody react with a 43-kDa polypeptide in extracts of Trypanosoma cruzi, Herpetomonas samuelpessoai and Leishmania mexicana amazonensis on protein immunoblots. The 43-kDa polypeptide co-migrates with skeletal muscle actin and is retained within trypanosomatid cytoskeletons. Attempts to isolate H. samuelpessoai actin through DNase I affinity chromatography showed that the 43-kDa polypeptide did not bind to the column. Instead, low yields of a 47-kDa polypeptide were obtained indicating that the trypanosomatid actin displays unusual DNase I binding behavior when compared to actins from higher eukaryotes. Immunofluorescence studies confirmed that cytoskeletons retain the actin-like protein. In H. samuelpessoai, actin is localized in the region close to the flagellum, whereas in T. cruzi it is more homogeneously distributed. The data presented here show that trypanosomatid actin displays biochemical characteristics similar to actins of other protozoa.  相似文献   

15.
Antibodies against the subunits of the dihydropyridine-sensitive L-type calcium channel of skeletal muscle were tested for their ability to immunoprecipitate the high affinity (Kd = 0.13 nM) 125I-omega-conotoxin GVIA receptor from rabbit brain membranes. Monoclonal antibody VD2(1) against the beta subunit of the dihydropyridine receptor from skeletal muscle specifically immunoprecipitated up to 86% of the 125I-omega-conotoxin receptor solubilized from brain membranes whereas specific antibodies against the alpha 1, alpha 2, and gamma subunits did not precipitate the brain receptor. Purified skeletal muscle dihydropyridine receptor inhibited the immunoprecipitation of the brain omega-conotoxin receptor by monoclonal antibody VD2(1). The dihydropyridine receptor from rabbit brain membranes was also precipitated by monoclonal antibody VD2(1). However, neither the neuronal ryanodine receptor nor the sodium channel was precipitated by monoclonal antibody VD2(1). The omega-conotoxin receptor immunoprecipitated by monoclonal antibody VD2(1) showed high affinity 125I-omega-conotoxin binding, which was inhibited by unlabeled omega-contoxin and by CaCl2 but not by nitrendipine or by diltiazem. An antibody against the beta subunit of the skeletal muscle dihydropyridine receptor stained 58- and 78-kDa proteins on immunoblot of the omega-conotoxin receptor, partially purified through heparin-agarose chromatography and VD2(1)-Sepharose chromatography. These results suggest that the brain omega-conotoxin-sensitive calcium channel contains a component homologous to the beta subunit of the dihydropyridine-sensitive calcium channel of skeletal muscle and brain.  相似文献   

16.
Deoxyribonuclease I (DNase I) is a divalent cation dependent endonuclease and thought to be a significant barrier to effective gene delivery. The only known DNase I-specific inhibitor is monomeric actin which acts by forming a 1:1 complex with DNase I. Its use, however, is restricted because of tendency to polymerize under certain conditions. We screened two random phage peptide libraries of complexity 10(8) and 10(9) for DNase I binders as candidates for DNase I inhibitors. A number of DNase I-binding peptide sequences were identified. When these peptides were expressed as fusion proteins with Escherichia coli maltose binding protein, they inhibited the actin-DNase I interaction (IC50 = 0.1-0.7 microM) and DNA degradation by DNase I (IC50 = 0.8-8 microM). Plasmid protection activity in the presence of DNase I was also observed with the fusion proteins. These peptides have the potential to be a useful adjuvant for gene therapy using naked DNA.  相似文献   

17.
Catecholamines are known to influence the contractility of cardiac and skeletal muscles, presumably via cAMP-dependent phosphorylation of specific proteins. We have investigated the in vitro phosphorylation of myofibrillar proteins by the catalytic subunit of cAMP-dependent protein kinase of fast- and slow-twitch skeletal muscles and cardiac muscle with a view to gaining a better understanding of the biochemical basis of catecholamine effects on striated muscles. Incubation of canine red skeletal myofibrils with the isolated catalytic subunit of cAMP-dependent protein kinase and Mg-[gamma-32P]ATP led to the rapid incorporation of [32P]phosphate into five major protein substrates of subunit molecular weights (MWs) 143,000, 60,000, 42,000, 33,000, and 11,000. The 143,000 MW substrate was identified as C-protein; the 42,000 MW substrate is probably actin; the 33,000 MW substrate was shown not to be a subunit of tropomyosin and, like the 60,000 and 11,000 MW substrates, is an unidentified myofibrillar protein. Isolated canine red skeletal muscle C-protein as phosphorylated to the extent of approximately 0.5 mol Pi/mol C-protein. Rabbit white skeletal muscle and bovine cardiac muscle C-proteins were also phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, both in myofibrils and in the isolated state. Cardiac C-protein was phosphorylated to the extent of 5-6 mol Pi/mol C-protein, whereas rabbit white skeletal muscle C-protein was phosphorylated at the level of approximately 0.5 mol Pi/mol C-protein. As demonstrated earlier by others, C-protein of skeletal and cardiac muscles inhibited the actin-activated myosin Mg2+-ATPase activity at low ionic strength in a system reconstituted from the purified skeletal muscle contractile proteins (actin and myosin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The insulin receptor from rat skeletal muscle was characterized. Treatment of muscle membranes with the photoactive insulin analog, 125I[N-epsilonB29-monoazidobenzoyl]-insulin revealed a single protein band of 135,000 Da, the alpha subunit. Iodination of total membrane protein followed by Triton X-100 solubilization and immunoprecipitation demonstrated the presence of a protein band of 90,000 Da, the beta subunit, together with a protein band of 190,000 Da, which may be the receptor precursor. In partially purified receptor preparations, the beta subunit exhibited dose-dependent, insulin-stimulated phosphorylation with incorporation of phosphate solely into tyrosine residues, which was also observed in the 190,000-Da receptor precursor. Purified plasma membranes contained a large amount of insulin-degrading activity which had to be inactivated prior to performing insulin-binding studies. If degradation of insulin was not prevented, apparent enhanced binding in the presence of unlabeled insulin was observed.  相似文献   

19.
D A Malencik  S R Anderson 《Biochemistry》1984,23(11):2420-2428
Calmodulin and troponin C exhibit calcium-dependent binding of 1 mol/mol of dynorphin. The dissociation constants of the complexes, determined in 0.20 N KC1-1.0 mM CaCI2, pH 7.3, are 0.6 microM for calmodulin, 2.4 microM for rabbit fast skeletal muscle troponin C, and 9 microM for bovine heart troponin C. Experiments with deletion peptides of dynorphin show that peptide chain length and especially charge affect the binding of the peptides by calmodulin. Dynorphin, but not mastoparan or melittin, inhibits adenosinetriphosphatase activity in a reconstituted rabbit skeletal muscle actomyosin assay. The inhibition is partially reversed by the addition of calmodulin or troponin C in the presence of calcium. Calmodulin also exhibits calcium-dependent binding of a synthetic peptide corresponding to positions 104-115 of rabbit fast skeletal muscle troponin I. Mastoparan is a tetradecapeptide from the vespid wasp having exceptional affinity for calmodulin, with Kd approximately 0.3 nM [Malencik, D.A., & Anderson, S.R. (1983) Biochem. Biophys. Res. Commun. 114, 50]. The addition of 1 mol/mol of mastoparan to the complex of calmodulin with dynorphin results in complete dissociation of dynorphin. Similar titrations of the skeletal muscle troponin C-dynorphin complex produce a gradual dissociation consistent with a dissociation constant of 0.2 microM for the troponin C-mastoparan complex. Fluorescence anisotropy measurements using the intrinsic tryptophan fluorescence of mastoparan X show strongly calcium-dependent binding by proteolytic fragments of calmodulin. binding by proteolytic fragments of calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
MICROHETEROGENEITY OF BRAIN CYTOPLASMIC AND SYNAPTOPLASMIC ACTINS   总被引:12,自引:9,他引:3  
Abstract— Actin present in whole rat brain cytoplasm and in synaptosomes was purified by DNase I affinity chromatography. By use of two-dimensional gels and one-dimensional isoelectric focusing gels, brain actin was shown to be composed of two isomeric forms. By comparison with muscle actins, brain actins were identified as the β and γ isomers. Muscle type α actin is not present in brain. Synaptosomal protein with high affinity for DNase I is primarily composed of β and γ actin, however, two minor synaptosomal proteins, S1 and S2, with similar DNase I affinity were also isolated. S11 and S2 have the same apparent molecular weight as whole brain actin, are more acidic than the major actin forms and are distinct from a actin. Relative to β and γ actin, the content of S1 and S2 is 3-fOld greater in synaptosomes when compared to similar non-synaptosomal species. The results demonstrate heterogeneity of brain actins and compartmentalization of brain proteins with high affinity for DNase I at the synapse. It was also shown that tubulin has selective affinity for the DNase I-actin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号