首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fusion of HIV-1 with the plasma membrane of CD4+ cells is triggered by the interaction of HIV-1 surface envelope glycoprotein gp120 with the CD4 receptor, and requires coreceptors (CCR5 and CXCR4). Recent advances in the study of HIV-1 entry into CD4+ cells suggest that glycosphingolipids (GSL) may also participate in the fusion process. GSL are organized in functional microdomains which are associated with specific membrane proteins such as CD4. GSL-enriched microdomains were purified from human lymphocytes and reconstituted as a monomolecular film at the air-water interface of a Langmuir film balance. Surface pressure measurements allowed to characterize the sequential interaction of GSL with CD4 and with gp120. Using this approach, we identified globotriaosylceramide (Gb3) and ganglioside GM3 as the main lymphocyte GSL recognized by gp120. In both cases, the interaction was saturable and dramatically increased by CD4. We propose that GSL microdomains behave as moving platforms allowing the recruitment of HIV-1 coreceptors after the initial interaction between the viral particle and CD4. According to this model, the GSL microdomain may: i) stabilize the attachment of the virus with the cell surface through multiple low affinity interactions between the V3 domain of gp120 and the carbohydrate moiety of GSL, and ii) convey the virus to an appropriate coreceptor by moving freely in the outer leaflet of the plasma membrane. This model can be extrapolated to all envelope viruses (e.g. influenza virus) that use cell surface GSL of the host cells as receptors or coreceptors.  相似文献   

2.
Zhou J  Aiken C 《Journal of virology》2001,75(13):5851-5859
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef stimulates viral infectivity by facilitating an early event in the HIV-1 life cycle. Although no structural or biochemical defects in Nef-defective HIV-1 particles have been demonstrated, the Nef protein is incorporated into HIV-1 particles. To localize the function of Nef within the virus particle, we developed a novel technology involving fusion of enveloped donor HIV-1 particles bearing core defects with envelope-defective target virions bearing HIV-1 receptors. Although neither virus alone was capable of infecting CD4(+) target cells, the incubation of donor and target virions prior to addition to target cells resulted in infection. This effect, termed "virion transcomplementation," required a functional Env protein on the donor virus and CD4 and an appropriate coreceptor on target virions. To provide evidence for intervirion fusion as the mechanism of complementation, experiments were performed using dual-enveloped HIV-1 particles bearing both HIV-1 and ecotropic murine leukemia virus (E-MLV) Env proteins as donor virions. Infection of CD4-negative target cells bearing E-MLV receptors was prevented by HIV-1 entry inhibitors when added before, but not after, incubation of donor and target virions prior to the addition to cells. When we used Nef(+) and Nef(-) donor and target virions, Nef enhanced infection when present in donor virions. In contrast, no effect of Nef was detected when present in the target virus. These results reveal a potential mechanism for enhancing HIV-1 diversity in vivo through the rescue of defective viral genomes and provide a novel genetic system for the functional analysis of virion-associated proteins in HIV-1 infection.  相似文献   

3.
In this study we examined the effects of target membrane cholesterol depletion and cytoskeletal changes on human immunodeficiency virus type 1 (HIV-1) Env-mediated membrane fusion by dye redistribution assays. We found that treatment of peripheral blood lymphocytes (PBL) with methyl-beta-cyclodextrin (MbetaCD) or cytochalasin reduced their susceptibility to membrane fusion with cells expressing HIV-1 Env that utilize CXCR4 or CCR5. However, treatment of human osteosarcoma (HOS) cells expressing high levels of CD4 and coreceptors with these agents did not affect their susceptibility to HIV-1 Env-mediated membrane fusion. Removal of cholesterol inhibited stromal cell-derived factor-1alpha- and macrophage inflammatory protein 1beta-induced chemotaxis of both PBL and HOS cells expressing CD4 and coreceptors. The fusion activity as well as the chemotactic activity of PBL was recovered by adding back cholesterol to these cells. Confocal laser scanning microscopy analysis indicated that treatment of lymphocytes with MbetaCD reduced the colocalization of CD4 or of CXCR4 with actin presumably in microvilli. These findings indicate that, although cholesterol is not required for HIV-1 Env-mediated membrane fusion per se, its depletion from cells with relatively low coreceptor densities reduces the capacity of HIV-1 Env to engage coreceptor clusters required to trigger fusion. Furthermore, our results suggest that coreceptor clustering may occur in microvilli that are supported by actin polymerization.  相似文献   

4.
The fusion of HIV-1 with the plasma membrane of CD4+ cells is triggered by the interaction of HIV-1 surface envelope glycoprotein gp120 with the CD4 receptor, and requires coreceptors (CCR5 and CXCR4). Recent advances in the study of HIV-1 entry into CD4+ cells suggest that glycosphingolipids (GSL) may also participate in the fusion process. GSL are organized in functional microdomains which are associated with specific membrane proteins such as CD4. GSL-enriched microdomains were purified from human lymphocytes and reconstituted as a monomolecular film at the air–water interface of a Langmuir film balance. Surface pressure measurements allowed to characterize the sequential interaction of GSL with CD4 and with gp120. Using this approach, we identified globotriaosylceramide (Gb3) and ganglioside GM3 as the main lymphocyte GSL recognized by gp120. In both cases, the interaction was saturable and dramatically increased by CD4. We propose that GSL microdomains behave as moving platforms allowing the recruitment of HIV-1 coreceptors after the initial interaction between the viral particle and CD4. According to this model, the GSL microdomain may : i) stabilize the attachment of the virus with the cell surface through multiple low affinity interactions between the V3 domain of gp120 and the carbohydrate moiety of GSL, and ii) convey the virus to an appropriate coreceptor by moving freely in the outer leaflet of the plasma membrane. This model can be extrapolated to all envelope viruses (e.g. influenza virus) that use cell surface GSL of the host cells as receptors or coreceptors.  相似文献   

5.
Apoptosis of uninfected bystander CD4(+) T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) pathogenesis. The viral and host mechanisms that lead to bystander apoptosis are not well understood. To investigate properties of the viral envelope glycoproteins (Env proteins) that influence the ability of HIV-1 to induce bystander apoptosis, we used molecularly cloned viruses that differ only in specific amino acids in Env. The ability of these strains to induce bystander apoptosis was tested in herpesvirus saimiri-immortalized primary CD4(+) T cells (CD4/HVS), which resemble activated primary T cells. Changes in Env that increase affinity for CD4 or CCR5 or increase coreceptor binding site exposure enhanced the capacity of HIV-1 to induce bystander apoptosis following viral infection or exposure to nonreplicating virions. Apoptosis induced by HIV-1 virions was inhibited by CD4, CXCR4, and CCR5 antibodies or by the CXCR4 inhibitor AMD3100, but not the fusion inhibitor T20. HIV-1 virions with mutant Envs that bind CXCR4 but are defective for CD4 binding or membrane fusion induced apoptosis, whereas CXCR4 binding-defective mutants did not. These results demonstrate that HIV-1 virions induce apoptosis through a CXCR4- or CCR5-dependent pathway that does not require Env/CD4 signaling or membrane fusion and suggest that HIV-1 variants with increased envelope/receptor affinity or coreceptor binding site exposure may promote T-cell depletion in vivo by accelerating bystander cell death.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) enters target cells by sequential binding to CD4 and specific seven-transmembrane-segment (7TMS) coreceptors. Viruses use the chemokine receptor CCR5 as a coreceptor in the early, asymptomatic stages of HIV-1 infection but can adapt to the use of other receptors such as CXCR4 and CCR3 as the infection proceeds. Here we identify one such coreceptor, Apj, which supported the efficient entry of several primary T-cell-line tropic (T-tropic) and dualtropic HIV-1 isolates and the simian immunodeficiency virus SIVmac316. Another 7TMS protein, CCR9, supported the less efficient entry of one primary T-tropic isolate. mRNAs for both receptors were present in phytohemagglutinin- and interleukin-2-activated peripheral blood mononuclear cells. Apj and CCR9 share with other coreceptors for HIV-1 and SIV an N-terminal region rich in aromatic and acidic residues. These results highlight properties common to 7TMS proteins that can function as HIV-1 coreceptors, and they may contribute to an understanding of viral evolution in infected individuals.  相似文献   

7.
Binding of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 to both CD4 and one of several chemokine receptors (coreceptors) permits entry of virus into target cells. Infection of tissues may establish latent viral reservoirs as well as cause direct pathologic effects that manifest as clinical disease such as HIV-associated dementia. We sought to identify the critical coreceptors recognized by HIV-1 tissue-derived strains as well as to correlate these coreceptor preferences with site of infection and dementia diagnosis. To reconstitute coreceptor use, we cloned HIV-1 envelope V3 sequences encoding the primary determinants of coreceptor specificity from 13 brain-derived and 6 colon-derived viruses into an isogenic (NL4-3) viral background. All V3 recombinants utilized the chemokine receptor CCR5 uniformly and efficiently as a coreceptor but not CXCR4, BOB/GPR15, or Bonzo/STRL33. Other receptors such as CCR3, CCR8, and US28 were inefficiently and variably used as coreceptors by various envelopes. CCR5 without CD4 present did not allow for detectable infection by any of the tested recombinants. In contrast to the pathogenic switch in coreceptor specificity frequently observed in comparisons of blood-derived viruses early after HIV-1 seroconversion and after onset of AIDS, the characteristics of these V3 recombinants suggest that CCR5 is a primary coreceptor for brain- and colon-derived viruses regardless of tissue source or diagnosis of dementia. Therefore, tissue infection may not depend significantly on viral envelope quasispeciation to broaden coreceptor range but rather selects for CCR5 use throughout disease progression.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) requires both CD4 and a coreceptor to infect cells. Macrophage-tropic (M-tropic) HIV-1 strains utilize the chemokine receptor CCR5 in conjunction with CD4 to infect cells, while T-cell-tropic (T-tropic) strains generally utilize CXCR4 as a coreceptor. Some viruses can use both CCR5 and CXCR4 for virus entry (i.e., are dual-tropic), while other chemokine receptors can be used by a subset of virus strains. Due to the genetic diversity of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) and the potential for chemokine receptors other than CCR5 or CXCR4 to influence viral pathogenesis, we tested a panel of 28 HIV-1, HIV-2, and SIV envelope (Env) proteins for the ability to utilize chemokine receptors, orphan receptors, and herpesvirus-encoded chemokine receptor homologs by membrane fusion and virus infection assays. While all Env proteins used either CCR5 or CXCR4 or both, several also used CCR3. Use of CCR3 was strongly dependent on its surface expression levels, with a larger number of viral Env proteins being able to utilize this coreceptor at the higher levels of surface expression. ChemR1, an orphan receptor recently shown to bind the CC chemokine I309 (and therefore renamed CCR8), was expressed in monocyte and lymphocyte cell populations and functioned as a coreceptor for diverse HIV-1, HIV-2, and SIV Env proteins. Use of ChemR1/CCR8 by SIV strains was dependent in part on V3 loop sequences. The orphan receptor V28 supported Env-mediated cell-cell fusion by four T- or dual-tropic HIV-1 and HIV-2 strains. Three additional orphan receptors failed to function for any of the 28 Env proteins tested. Likewise, five of six seven-transmembrane-domain receptors encoded by herpesviruses did not support Env-mediated membrane fusion. However, the chemokine receptor US28, encoded by cytomegalovirus, did support inefficient infection by two HIV-1 strains. These findings indicate that additional chemokine receptors can function as HIV and SIV coreceptors and that surface expression levels can strongly influence coreceptor use.  相似文献   

9.
Previously, we reported that treatment of cells with sphingomyelinase inhibits human immunodeficiency virus type 1 (HIV-1) entry. Here, we determined by measuring fluorescence recovery after photobleaching that the lateral diffusion of CD4 decreased 4-fold following sphingomyelinase treatment, while the effective diffusion rate of CCR5 remained unchanged. Notably, sphingomyelinase treatment of cells did not influence gp120 binding, HIV-1 attachment, or fluid-phase and receptor-mediated endocytosis. Furthermore, sphingomyelinase treatment did not affect the membrane disposition of the HIV receptor proteins CD4, CXCR4, and CCR5, as determined by Triton X-100 extraction. Restriction of CD4 diffusion by antibody cross-linking also inhibited HIV infection. We therefore interpret the decrease in CD4 lateral mobility following sphingomyelinase treatment in terms of clustering of CD4 molecules. Examination of fusion intermediates indicated that sphingomyelinase treatment inhibited HIV at a step in the fusion process after CD4 engagement. Maximal inhibition of fusion was observed following short coculture times and with target cells that express low levels of CD4. As HIV entry into cells requires the sequential engagement of viral envelope protein with CD4 and coreceptor, we propose that sphingomyelinase inhibits HIV infection by inducing CD4 clustering that prevents coreceptor engagement and HIV fusion.  相似文献   

10.
Infections by human immunodeficiency virus type 1 (HIV-1) involve interactions of the viral envelope glycoprotein gp120 with CD4 and then with a coreceptor. R5 isolates of HIV-1 use CCR5 as a coreceptor, whereas X4 isolates use CXCR4. It is not known whether coreceptors merely trigger fusion of the viral and cellular membranes or whether they also influence the energetics of virus adsorption, the placement of the membrane fusion reaction, and the metabolism of adsorbed gp120. Surprisingly, the pathway for metabolism of adsorbed gp120 has not been investigated thoroughly in any cells. To address these issues, we used purified (125)I-gp120s derived from the R5 isolate BaL and from the X4 isolate IIIB as ligands for binding onto human cells that expressed CD4 alone or CD4 with a coreceptor. The gp120 preparations were active in forming ternary complexes with CD4 and the appropriate coreceptor. Moreover, the cellular quantities of CD4 and coreceptors were sufficient for efficient infections by the corresponding HIV-1 isolates. In these conditions, the kinetics and affinities of (125)I-gp120 adsorptions and their subsequent metabolisms were strongly dependent on CD4 but were not significantly influenced by CCR5 or CXCR4. After binding to CD4, the (125)I-gp120s slowly became resistant to extraction from the cell monolayers by pH 3.0 buffer, suggesting that they were endocytosed with half-times of 1-2 h. Within 20-30 min of endocytosis, the (125)I-gp120s were proteolytically degraded to small products that were shed into the media. The weak base chloroquine strongly inhibited (125)I-gp120 proteolysis and caused its intracellular accumulation, suggesting involvement of a low pH organelle. Results supporting these methods and conclusions were obtained by confocal immunofluorescence microscopy. We conclude that the energetics, kinetics, and pathways of (125)I-gp120 binding, endocytosis, and proteolysis are determined principally by CD4 rather than by coreceptors in cells that contain sufficient coreceptors for efficient infections. Therefore, the role of coreceptors in HIV-1 infections probably does not include steerage or subcellular localization of adsorbed virus.  相似文献   

11.
Syntenin-1 is a cytosolic adaptor protein involved in several cellular processes requiring polarization. Human immunodeficiency virus type 1 (HIV-1) attachment to target CD4(+) T-cells induces polarization of the viral receptor and coreceptor, CD4/CXCR4, and cellular structures toward the virus contact area, and triggers local actin polymerization and phosphatidylinositol 4,5-bisphosphate (PIP(2)) production, which are needed for successful HIV infection. We show that syntenin-1 is recruited to the plasma membrane during HIV-1 attachment and associates with CD4, the main HIV-1 receptor. Syntenin-1 overexpression inhibits HIV-1 production and HIV-mediated cell fusion, while syntenin depletion specifically increases HIV-1 entry. Down-regulation of syntenin-1 expression reduces F-actin polymerization in response to HIV-1. Moreover, HIV-induced PIP(2) accumulation is increased in syntenin-1-depleted cells. Once the virus has entered the target cell, syntenin-1 polarization toward the viral nucleocapsid is lost, suggesting a spatiotemporal regulatory role of syntenin-1 in actin remodeling, PIP(2) production, and the dynamics of HIV-1 entry.  相似文献   

12.
Cell surface receptors exploited by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) for infection are major determinants of tropism. HIV-1 usually requires two receptors to infect cells. Gp120 on HIV-1 virions binds CD4 on the cell surface, triggering conformational rearrangements that create or expose a binding site for a seven-transmembrane (7TM) coreceptor. Although HIV-2 and SIV strains also use CD4, several laboratory-adapted HIV-2 strains infect cells without CD4, via an interaction with the coreceptor CXCR4. Moreover, the envelope glycoproteins of SIV of macaques (SIV(MAC)) can bind to and initiate infection of CD4(-) cells via CCR5. Here, we show that most primary HIV-2 isolates can infect either CCR5(+) or CXCR4(+) cells without CD4. The efficiency of CD4-independent infection by HIV-2 was comparable to that of SIV, but markedly higher than that of HIV-1. CD4-independent HIV-2 strains that could use both CCR5 and CXCR4 to infect CD4(+) cells were only able to use one of these receptors in the absence of CD4. Our observations therefore indicate (i) that HIV-2 and SIV envelope glycoproteins form a distinct conformation that enables contact with a 7TM receptor without CD4, and (ii) the use of CD4 enables a wider range of 7TM receptors to be exploited for infection and may assist adaptation or switching to new coreceptors in vivo. Primary CD4(-) fetal astrocyte cultures expressed CXCR4 and supported replication by the T-cell-line-adapted ROD/B strain. Productive infection by primary X4 strains was only triggered upon treatment of virus with soluble CD4. Thus, many primary HIV-2 strains infect CCR5(+) or CXCR4(+) cell lines without CD4 in vitro. CD4(-) cells that express these coreceptors in vivo, however, may still resist HIV-2 entry due to insufficient coreceptor concentration on the cell surface to trigger fusion or their expression in a conformation nonfunctional as a coreceptor. Our study, however, emphasizes that primary HIV-2 strains carry the potential to infect CD4(-) cells expressing CCR5 or CXCR4 in vivo.  相似文献   

13.
Lentiviral Nef proteins are key factors for pathogenesis and are known to downregulate functionally important molecules, including CD4 and major histocompatibility complex class I (MHC-I), from the surfaces of infected cells. Recently, we demonstrated that Nef reduces cell surface levels of the human immunodeficiency virus type 1 (HIV-1) entry coreceptor CCR5 (N. Michel, I. Allespach, S. Venzke, O. T. Fackler, and O. T. Keppler, Curr. Biol. 15:714-723, 2005). Here, we report that Nef downregulates the second major HIV-1 coreceptor, CXCR4, from the surfaces of HIV-infected primary CD4 T lymphocytes with efficiencies comparable to those of the natural CXCR4 ligand, stromal cell-derived factor-1 alpha. Analysis of a panel of mutants of HIV-1(SF2) Nef revealed that the viral protein utilized the same signature motifs for downmodulation of CXCR4 and MHC-I, including the proline-rich motif P(73)P(76)P(79)P(82) and the acidic cluster motif E(66)E(67)E(68)E(69.) Expression of wild-type Nef, but not of specific Nef mutants, resulted in a perinuclear accumulation of the coreceptor. Remarkably, the carboxy terminus of CXCR4, which harbors the classical motifs critical for basal and ligand-induced receptor endocytosis, was dispensable for the Nef-mediated reduction of surface exposure. Functionally, the ability of Nef to simultaneously downmodulate CXCR4 and CD4 correlated with maximum-level protection of Nef-expressing target cells from fusion with cells exposing X4 HIV-1 envelopes. Furthermore, the Nef-mediated downregulation of CXCR4 alone on target T lymphocytes was sufficient to diminish cells' susceptibility to X4 HIV-1 virions at the entry step. The downregulation of chemokine coreceptors is a conserved activity of Nef to modulate infected cells, an important functional consequence of which is an enhanced resistance to HIV superinfection.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) infection of human macrophages can be inhibited by antibodies which bind to the tetraspanin protein CD63, but not by antibodies that bind to other members of the tetraspanin family. This inhibitory response was limited to CCR5 (R5)-tropic virus and was only observed using macrophages, but not T cells. Here, we show that recombinant soluble forms of the large extracellular domain (EC2) of human tetraspanins CD9, CD63, CD81, and CD151 produced as fusion proteins with glutathione S-transferase (GST) can all potently and completely inhibit R5 HIV-1 infection of macrophages with 50% inhibitory concentration values of 0.11 to 1.2 nM. Infection of peripheral blood mononuclear cells could also be partly inhibited, although higher concentrations of EC2 proteins were required. Inhibition was largely coreceptor independent, as macrophage infections by virions pseudotyped with CXCR4 (X4)-tropic HIV-1 or vesicular stomatitis virus (VSV)-G glycoproteins were also inhibited, but was time dependent, since addition prior to or during, but not after, virus inoculation resulted in potent inhibition. Incubation with tetraspanins did not decrease CD4 or HIV-1 coreceptor expression but did block virion uptake. Colocalization of fluorescently labeled tetraspanin EC2 proteins and HIV-1 virions within, and with CD4 and CXCR4 at the cell surfaces of, macrophages could be detected, and internalized tetraspanin EC2 proteins were directed to vesicular compartments that contained internalized dextran and transferrin. Collectively, the data suggest that the mechanism of inhibition of HIV-1 infection by tetraspanins is at the step of virus entry, perhaps via interference with binding and/or the formation of CD4-coreceptor complexes within microdomains that are required for membrane fusion events.  相似文献   

15.
The human cytomegalovirus (CMV) US28 gene encodes a functional CC chemokine receptor. However, this activity was observed in cells transfected to express US28 and might not correspond to the actual role of the protein in the CMV life cycle. Expression of US28 allows human immunodeficiency virus type 1 (HIV-1) entry into certain CD4+ cells and their fusion with cells expressing HIV-1 envelope (Env) proteins. Such properties were initially reported for the cellular chemokine receptors CCR5 and CXCR4, which behave as CD4-associated HIV-1 coreceptors. We found that coexpression of US28 and either CXCR4 or CCR5 in CD4+ cells resulted in enhanced synctium formation with HIV-1 Env+ cells. This positive effect of US28 on cell fusion seems to be distinct from its HIV-1 coreceptor activity. Indeed, enhancement of cell fusion was also observed when US28 was expressed on the HIV-1 Env+ cells instead of an CD4+ target cells. Furthermore, US28 could enhance cell fusion mediated by other viral proteins, in particular, the G protein of vesicular stomatitis virus (VSV-G). The HIV-1 coreceptor and fusion-enhancing activities could be affected by mutations in different domains of US28. The fusion-enhancing activity of US28 seems to be cell type dependent. Indeed, cells coexpressing VSV-G and US28 fused more efficiently with human, simian, or feline target cells, while US28 had no apparent effect on fusion with the three mouse or rat cell lines tested. The positive effect of US28 on cell fusion might therefore require its interaction with a cell-specific factor. We discuss a possible role for US28 in the fusion of the CMV envelope with target cells and CMV entry.  相似文献   

16.
Several members of the chemokine receptor family have recently been identified as coreceptors, with CD4, for entry of human immunodeficiency virus type 1 (HIV-1) into target cells. In this report, we show that the envelope glycoproteins of several strains of HIV-2 and simian immunodeficiency virus (SIV) employ the same chemokine receptors for infection. Envelope glycoproteins from HIV-2 use CCR5 or CXCR4, while those from several strains of SIV use CCR5. Our data indicate also that some viral envelopes can use more than one coreceptor for entry and suggest that some of these coreceptors remain to be identified. To further understand how different envelope molecules use CCR5 as an entry cofactor, we show that soluble purified envelope glycoproteins (SU component) from CCR5-tropic HIV-1, HIV-2, and SIV can compete for binding of iodinated chemokine to CCR5. The competition is dependent on binding of the SU glycoprotein to cell surface CD4 and implies a direct interaction between envelope glycoproteins and CCR5. This interaction is specific since it is not observed with SU glycoprotein from a CXCR4-tropic virus or with a chemokine receptor that is not competent for viral entry (CCR1). For HIV-1, the interaction can be inhibited by antibodies specific for the V3 loop of SU. Soluble CD4 was found to potentiate binding of the HIV-2 ST and SIVmac239 envelope glycoproteins to CCR5, suggesting that a CD4-induced conformational change in SU is required for subsequent binding to CCR5. These data suggest a common fundamental mechanism by which structurally diverse HIV-1, HIV-2, and SIV envelope glycoproteins interact with CD4 and CCR5 to mediate viral entry.  相似文献   

17.
The initial step of human immunodeficiency virus type 1 (HIV-1) infection has been studied by Env-mediated fusion or entry assays with appropriate cells expressing CD4 or CXCR4/CCR5 receptors in cultures, where many factors underlying cellular activities likely regulate the fusion/entry efficiency. Here we attempted to develop a more simplified in vitro cell-free fusion/entry reaction that mimics HIV-1 infection in cultures. Membrane fragments of target cells and intact infectious HIV-1 particles were purified, mixed and incubated. The core p24 protein was released from the purified virions and detected by ELISA without detergents in the supernatant of the reaction mixtures. This release reaction proceeded temperature-dependently and in a dose-dependent manner between the virion and membrane fractions, and was specific for HIV-1 Env and CD4. Env-deleted or VSV-G-pseudotyped HIV-1 released little p24, if any. Pretreatment of the membrane fragments with anti-CD4 antibodies inhibited the p24 induction from both X4-tropic and R5-tropic HIV-1. Furthermore, X4 but not R5 HIV-1 reacted with the membrane prepared from intrinsically CXCR4-positive HeLa-CD4 cells, whereas both viruses reacted with that prepared from CCR5-transduced HeLa-CD4 cells, indicating that this cell-free reaction mimics coreceptor usage of HIV-1 infection. Therefore, a potent entry inhibitor of X4 HIV-1, SDF-1alpha, blocked the release from X4 but not R5 HIV-1. Inversely, a weak entry inhibitor of R5 HIV-1, MIP-1beta, partially affected only the release from R5 HIV-1. These results suggest that this cell-free reaction system provides a useful tool to study biochemical fusion/entry mechanisms of HIV-1 and its inhibitors.  相似文献   

18.
Receptor binding largely governs viral tropism, since the presence of CD4 and an appropriate coreceptor is a prerequisite for membrane fusion and virus infection. Env-receptor interactions are conformationally complex, involving multiple regions in both gp120 as well as in the receptors. As a result, differences in receptor conformation, posttranslational processing, and surface density all have the potential to influence viral infectivity and therefore tropism and pathogenesis. This review gives an overview of the research that led to the discovery of chemokine receptors as coreceptors for HIV-1, describes the repertoire of coreceptors described to date and addresses their in vivo relevance. We will discuss very recent studies that indicate that while the presence of CD4 and coreceptor are necessary for virus infection, their mere presence is not sufficient.  相似文献   

19.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as "minor coreceptors", indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

20.
Coreceptor usage of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to biological phenotype. The chemokine receptors CCR5 and CXCR4 are the major coreceptors that, together with CD4, govern HIV-1 entry into cells. Since CXCR4 usage determines the biological phenotype for HIV-1 isolates and is more frequent in patients with immunodeficiency, it may serve as a marker for viral virulence. This possibility prompted us to study coreceptor usage by HIV-2, known to be less pathogenic than HIV-1. We tested 11 primary HIV-2 isolates for coreceptor usage in human cell lines: U87 glioma cells, stably expressing CD4 and the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, and GHOST(3) osteosarcoma cells, coexpressing CD4 and CCR5, CXCR4, or the orphan receptor Bonzo or BOB. The indicator cells were infected by cocultivation with virus-producing peripheral blood mononuclear cells and by cell-free virus. Our results show that 10 of 11 HIV-2 isolates were able to efficiently use CCR5. In contrast, only two isolates, both from patients with advanced disease, used CXCR4 efficiently. These two isolates also promptly induced syncytia in MT-2 cells, a pattern described for HIV-1 isolates that use CXCR4. Unlike HIV-1, many of the HIV-2 isolates were promiscuous in their coreceptor usage in that they were able to use, apart from CCR5, one or more of the CCR1, CCR2b, CCR3, and BOB coreceptors. Another difference between HIV-1 and HIV-2 was that the ability to replicate in MT-2 cells appeared to be a general property of HIV-2 isolates. Based on BOB mRNA expression in MT-2 cells and the ability of our panel of HIV-2 isolates to use BOB, we suggest that HIV-2 can use BOB when entering MT-2 cells. The results indicate no obvious link between viral virulence and the ability to use a multitude of coreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号