首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
天然针叶林在热带地区虽较为少见, 但其对维持热带地区的生物多样性和生境异质性具有特殊意义。在我国热带天然针叶林集中分布面积最大的海南霸王岭林区, 作者选择伴生阔叶树种优势度不同的两种典型南亚松(Pinus latteri)天然林(简称纯林和混交林), 采用点格局法分析了其林冠层、亚林层和林下层主要树种的空间分布格局及其关联性。结果表明: (1)纯林中林冠层的南亚松主要为聚集分布, 混交林中在较小尺度上为聚集分布, 在较大尺度上为随机分布。(2)纯林中亚林层树种在较小尺度上为聚集分布, 在较大尺度上为随机分布, 在混交林中主要为聚集分布。(3)纯林中林下层树种主要呈现为随机分布, 而在混交林中主要为聚集分布。(4)随着尺度的增加, 林冠层与其他两个层次的树种, 在纯林中表现出从空间无关联到正关联的变化趋势, 而在混交林中则表现出从空间无关联到负关联的变化趋势。(5)亚林层与林下层树种在各个尺度上都表现为空间正关联。由此可见, 热带天然针叶林中优势种南亚松对伴生阔叶树种的分布格局具有重要影响。  相似文献   

2.
The persistence of seedlings in the forest understorey is of major importance for the maintenance and regeneration of canopy trees in several forested ecosystems. In the present study, we examine the small-scale spatial pattern of a mixed beech and oak seedling–sapling bank in two areas of an unmanaged temperate deciduous forest with different environmental conditions. We used environmental, biotic and spatial variables to establish the main factors that explain the spatial pattern of these seedling–sapling banks at different scales. The stand structure in both areas was similar, but while in plot A beech dominated the canopy, plot B was dominated by oaks. In both areas, established beech individuals showed a clear reverse J-shaped distribution, whereas established oaks showed a unimodal distribution with only a few young individuals. Seedlings of beech and oak were distributed in aggregates, whereas beech saplings had a random distribution. At broader scales, the abundance of seedlings and saplings is affected by the environment as well as by inter-species competition, while at finer scales the spatial pattern is mainly influenced by stochastic processes, probably related to seed predation and establishment. The structure of the seedling–sapling bank indicates an advantage of beech over oak as far as regeneration is concerned. Beech seedlings and saplings tolerate the stress induced by the canopy and the understorey and persist for many years, while oak seedlings decline in a few years. Therefore, if current conditions persist, after canopy opening beech seedlings and saplings can grow rapidly into the canopy and the stands will move towards beech dominance.  相似文献   

3.
The stand structure and disturbance history in a sub-boreal coniferous forest dominated byPicea jezoensis, Picea glehnii andAbies sachalinensis were investigated in four study plots set up in Taisetsuzan National Park, Japan. The effect of stand characteristics on the growth and mortality rates of understory trees was examined. Although all the stands showed inverse J-shape d.b.h. (diameter at breast height) distributions, the age structure and disturbance history differed amongst the stands. The stands with wide d.b.h. distribution (i.e. large CV and skewness) were more uneven-aged than those with narrow d.b.h. distribution (i.e. small CV and skewness). The disturbance-return interval based on the model of Hett and Loucks was 31 to 65 years. The gap ratio in the canopy was also different among the stands. These suggest that the variations in stand structure represent different occurrences of natural disturbances. Furthermore, the structural features such as size structure, canopy gap ratio and density of canopy trees also affected the growth dynamics of understory trees (≥2 m in height and <10 cm in diameter at breast height). The growth and mortality rates of understory trees changed with the canopy gap ratio and canopy tree density. The understory trees of stands with wide canopy d.b.h. distribution had higher growth and canopy recruitment rates than those of stands with narrow canopy d.b.h. distribution, contributing to the maintenance of continuous stand stratification. The understory trees of stands with narrow canopy d.b.h. distribution showed lower growth and higher mortality rates than those of stands with narrow canopy d.b.h. distribution, leading to the formation of a single-canopy structure. It is suggested that natural disturbance governs the regeneration process in the future by affecting the growth and mortality patterns of understory trees through the stand structure (size and age structure, canopy tree density, canopy gap ratio).  相似文献   

4.
The effect of canopy trees on understory seedling and sapling distribution is examined in near-climax hemlock-northern hardwood forests in order to predict tree replacement patterns and assess compositional stability. Canopy trees and saplings were mapped in 65 0.1-ha plots in 16 tracts of old-growth forests dominated by Tsuga canadensis, Acer saccharum, Fagus grandifolia, Tilia americana, and Betula lutea in the northeastern United States. Seedlings were tallied in sub-plots. Canopy influence on individual saplings and sub-plots was calculated, using several indices for canopy species individually and in total. For each species sapling and seedling distributions were compared to those distributions expected if saplings were located independently of canopy influence. Non-random distributions indicated that sapling and seedling establishment or mortality were related to the species of nearby canopy trees. Hemlock canopy trees discriminate against beech and maple saplings while sugar maple canopy favors beech saplings relative to other species. Basswood canopy discourages growth of saplings of other species, but produces basal sprouts. Yellow birch saplings were rarely seen beneath intact canopy. Since trees in these forests are usually replaced by suppressed seedlings or saplings, canopy-understory interactions should influence replacement probabilities and, ultimately, stand composition. I suggest that hemlock and basswood tend to be self-replacing, maple and beech tend to replace each other, and birch survives as a fugitive by occupying occasional suitable gaps. This suggests that these species may co-exist within stands for long periods with little likelihood of successional elimination of any species. There is some suggestion of geographical variation in these patterns.  相似文献   

5.
Abstract. 1. The position and zonation of mines and galls along beech leaves were recorded and analysed by means of an R X C test of independence using the G-test; in a few cases analysis of variance was applied.
2. Ten arthropod species, of which a few were congeneric, were studied. All species were recorded from all leaf sections; however, in all species except one, significant preferences for certain zones were demonstrated. High frequencies of leaf mines and galls were recorded from the middle and basal leaf sections. Apparently, the leaf apex is an unimportant microhabitat for stationary beech phyllophages, except the eriophyid Aceric stenaspis stenaspis and final leaf mining stages of the beech weevil Rhynchaenus fagi; intra-leaf differences are discussed in relation to leaf grazing by mobile, chewing phyllophagous insects.
3. The position of some abundant phyllophages in space and time is discussed. In old beech stands feeding activity is largely concentrated in the low canopy. Presumably, differences in feeding technique and position of feeding tracks of beech phyllophages on the leaf contribute to food resource partition in this canopy layer. In three congeneric eriophyid species niche diversification occurred. Further, in two cecidomyiid species phenologjcal differentiation may contribute to subdivision of food resources.  相似文献   

6.
Abstract. 1. In laboratory experiments, R.fagi made feeding holes in eighteen tree and shrub species, including beech, from seven plant families but few plants other than beech were eaten to any extent.
2. Overwintered adult weevils preferred beech to all these eighteen plants in spring.
3. Hawthorn and raspberry were the most acceptable plants if beech was not available at this time.
4. Field collected weevils from hawthorn had partly developed oocytes in early April, prior to beech bud burst.
5. New generation weevils sought alternative food sources in late June and July; raspberry was preferred to the youngest available beech leaves at this time.  相似文献   

7.
The survival and growth of natural beech regeneration after canopy removal is variable and little is known about ecophysiological mechanisms of these responses. Biomass, nonstructural carbohydrate levels and nitrogen concentrations were measured in an Italian population of European beech seedlings. Seedlings were container-grown in two types of soil, organic and mineral, collected at the study site. The seedlings were grown under three light treatments: under full beech canopy (understory), exposed to full sun only during midday (gap) and under full sun (clearing). Leaf gas exchange and chlorophyll a fluorescence parameters were measured and then foliar analyses were conducted for chlorophyll, phenolic and tannin levels. Biomass and allocation were significantly affected by light and soil treatments. The clearing seedlings and those in organic soil were larger than seedlings in the other light treatments or soil type. Total nonstructural carbohydrate concentrations were lower in the understory seedlings and significant differences between soil types were present in the gap and clearing seedlings. Nitrogen concentrations were higher in the understory seedlings and those growing in the organic soil compared to the other treatments. Gas exchange rates were highest in clearing and the organic soil seedlings. Gap seedlings exhibited photosynthetic acclimation that allowed them to utilize high light of midday and any sunflecks during the morning and afternoon. Relative fluorescence was significantly influenced by both light treatment and soil type, with the highest values observed in the gap seedlings. Light response curves showed decreasing apparent maximum quantum efficiency from the understory to clearing, while maximum photosynthetic rate was highest in the gap seedlings. Chlorophyll concentration was highest in understory seedlings and those growing in organic soil and higher in seedlings growing in organic than in mineral soil. Both foliar tannin and phenolic levels were highest in clearing seedlings, and only tannin concentrations were affected by soil type. Understory seedlings had the highest mortality and insect herbivory; the latter was found to be inversely related to tannin concentration. Overall, growth and photosynthesis in beech seedlings responded positively to high light associated with small canopy gaps. Organic soil increased seedling size, particularly in the gap and clearing environments. We conclude that forest gaps are favorable for photosynthesis and growth of European beech seedlings.  相似文献   

8.
Quantitative vegetational data of canopy and woody subcanopy species (two life-forms adapted to occupy different strata at maturity) were compared with data collected in two temperate forest ecosystems to determine whether they exhibit a similar pattern of distribution. Tidal freshwater swamps (21 stands) and southern Appalachian forests (19 stands) were examined from data obtained using identical sampling methods. Separate structural analyses of the canopy, sapling, and subcanopy species were compared using the indirect ordination algorithm Detrended Correspondence Analysis. Environmental measurements collected in each stand were assessed for their relationship to the distribution of stands depicted by the ordination diagrams.Canopy trees and saplings showed a similar pattern of distribution, suggesting that the resource requirements of saplings and canopy-statured adults are similar. In contrast, the subcanopy species (species genetically adapted to an understory existence, i.e., shrubs and small understory trees) of neither ecosystem showed any discernable distributional relationship to the canopy or sapling layers (in tidal swamps, there was no clear way to even segregate subcanopy stands into communities). Environmental gradients associated with the subcanopy ordinations differed from those of the canopy and sapling strata in both forest systems, suggesting that subcanopy species partition different resources than do canopy species.If a lack of similarity in distribution patterns between canopy and subcanopy species is universal in temperate forests, then the common practice of combining sapling and subcanopy species in structural analyses may hinder our understanding of subcanopy structural patterns in forests.  相似文献   

9.
A spatial model of forest dynamics   总被引:3,自引:0,他引:3  
R. T. Busing 《Plant Ecology》1991,92(2):167-179
Effects of spatial processes on temperate deciduous forest structure and dynamics were investigated with a spatial simulator derived from a forest gap model. The multi-species neighborhood model accounted for competitive interactions and endogenous disturbance in the form of small canopy gaps. Simulated and actual spatial pattern of old-growth stands were compared. The 400 yr simulations produced a pattern scale (0.07–0.2 ha patches) similar to that of an actual stand; simulated pattern intensity was greater than actual intensity, however. Distances to nearest neighbor were somewhat similar for trees in the simulated and actual stands; yet the frequency distributions of distance to nearest neighbor values differed substantially. The simulated stand patterns were generally less random than the actual patterns. Spatial pattern changed markedly during the course of simulated succession. Pattern approached a random dispersion in early succession. Intensity peaked at mid-succession (ca. 150 yr) with a hyperdispersed overstory and a strongly clumped understory. Pattern intensity diminished in late succession as a mixed size structure developed. Old-growth patch size was greater than the neighborhood (or gap) size, suggesting the gap-sized areas do not behave independently.  相似文献   

10.
1 We characterized and compared diversity patterns of canopy and understorey spiders (Arachnida: Araneae) on sugar maple ( Acer saccharum Marsh.) and American beech ( Fagus grandifolia Ehrh.) in hardwood forests of southern Québec, Canada.
2 We sampled canopies of 45 sugar maple and 45 American beech trees and associated understorey saplings in mature protected forests near Montréal. Samples were obtained by beating the crown foliage at various heights and by beating saplings around each tree.
3 Eighty-two species were identified from 13 669 individuals. Forty-eight species and 3860 individuals and 72 species and 9809 individuals were collected from the canopy and the understorey, respectively.
4 Multivariate analyses (NMDS ordination and NPMANOVA) showed the composition of canopy and understorey assemblages differed significantly, and canopy assemblages differed between tree species. Rank-abundance distribution models fitted to the canopy and understorey data indicated that different mechanisms structure the assemblages in both habitats. Three abundant spider species were significantly more common in the canopy; ten species were collected significantly more often in the understorey.
5 The forest canopy was shown to be an important reservoir for spider diversity in north-temperate forests.  相似文献   

11.
林窗作为森林群落中一种重要的干扰方式, 对林下物种构成有着重要的影响。开展林窗空间格局及其特征指数与林下植物多样性关系研究对于探讨林窗对林下生物多样性的影响有重要意义, 有助于进一步了解群落动态, 在物种多样性保护方面也具有指导作用。本研究在西双版纳热带雨林地区随机选取3块大小为1 ha的热带雨林为研究样地, 采用轻小型六旋翼无人机搭载Sony ILCE-A7r可见光传感器, 分别获取各个样地的高清数字影像, 结合数字表面高程模型以及各个样地的地形数据用以确定各样区的林窗分布格局, 并进一步提取出各林窗的景观格局指数。结合地面样方基础调查数据, 对各样地各林窗下植物多样性情况进行统计, 旨在分析热带雨林林窗空间分布格局以及林窗下植物多样性对各林窗空间格局特征的响应情况。研究表明, 西双版纳州热带雨林林窗呈大而分散的空间分布, 林窗空间格局特征指数如林窗形状复杂性指数、林窗面积都与林下植物多样性呈显著正相关关系。在面积小的林窗下, 较之林窗形状复杂性因子, 林窗面积大小对林下植物多样性影响更显著; 在面积达到一定程度后, 相对于面积因子, 林窗形状复杂性指数对林下植物多样性影响更显著, 各样地林窗皆趋于向各自所处样地顶极群落发展。  相似文献   

12.
Fragmentation changes the spatial patterns of landscapes in ways that can alter the flow of materials and species; however, our understanding of the consequences of this fragmentation and flow alteration for ecosystem processes and ecosystem services remains limited. As an ecological process that affects many ecosystem services and is sensitive to fragmentation, insect herbivory is a good model system for exploring the role of fragmentation, and the resulting spatial patterns of landscapes, in the provision of ecosystem services. To refine our knowledge of how changes in landscape pattern affect insect herbivory, we quantified the combined influence of among patch (patch area and patch connectivity) and within patch (location within patch; canopy, edge, interior) factors on amounts of insect herbivory in a fragmented forest landscape. We measured herbivory in 20 forest patches of differing size and connectivity in southern Quebec (Canada). Within each patch, herbivory was quantified at the interior, edge, and canopy of sugar maple trees during the spring and summer of 2011 and 2012. Results show that connectivity affects herbivory differently depending on the location within the patch (edge, interior, canopy), an effect that would have gone unnoticed if samples were pooled across locations. These results suggest considering structure at both the patch and within patch scales may help to elucidate patterns when studying the effects of fragmentation on ecosystem processes, with implications for the services they support.  相似文献   

13.
The spatial distribution pattern of trees and the association between canopy and understory individuals were examined with reference to the distribution of tree crowns in a cool temperate, mixed forest in Ohdaigahara, western Japan. Line transect and contact sampling methods were used to examine the pattern over various spatial scales. These methods are useful to detect patterns over a large study area. The dominance ofChamaecyparis obtusa on steep slopes forming large patches suggested that the distribution of this species is a consequence of landslides. UnderstoryFagus crenata showed a clumped distribution, and the relative coverage of this species was larger in canopy gaps than under a closed canopy. Understory individuals ofAbies homolepis showed a positive association with canopy trees ofF. crenata but a negative association with conspecific canopy individuals. These patterns suggested thatF. crenata regenerates in canopy gaps and is replaced byA. homolepis. The dynamics of these two species are consistent with the process of gap dynamics. The effects of both small- and large-scale disturbance must be evaluated to understand the mechanisms of patch formation and the coexistence of forest tree species.  相似文献   

14.
辽东山区原始阔叶红松林主要树种空间结构特征   总被引:2,自引:0,他引:2  
维持森林结构多样性通常被认为是确保森林生态系统稳定性和生物多样性的有效方式.本研究以辽东山区原始阔叶红松林为对象,运用相邻木空间关系构建林分空间结构参数,探究顶极群落内部主要优势乔木的空间结构特征,并以此顶极群落为借鉴,为低质量次生林改造和人工纯林结构优化经营提供参考.结果表明: 辽东山区原始阔叶红松林林分的径级分布呈倒“J”形,林下更新良好,同时保持一定比例的大径木存在;林分平均角尺度为0.507,整体呈随机分布状态,混交度平均值为0.82,混交度强;平均大小比数为0.506,反映出林分整体处于中庸状态.林分中不同优势度在极强混交维度下出现了一定程度的分化,反映出处于中下层绝对劣势的小径级被压木和主林层的绝对优势木在不同垂直空间上的优化分布与利用.林分中各优势树种的分布也随机镶嵌于总体的随机格局之中.  相似文献   

15.
Question: To what extent do small‐scale disturbances in the forest canopy, created by natural disturbance agents, affect stand development? Doubts exist as to whether small canopy openings have any real effect on the understory tree recruitment, especially in boreal forests. Location: Conifer and mixed stands in the Gaspesian region in eastern Québec. The main natural disturbance agents are recurring outbreaks of Choristoneura fumiferana (eastern spruce budworm) and winds. Methods: Linear transects in 27 sites were used to describe the gap (< 0.1 ha) regime parameters, including gap fraction, gap size and change in disturbance severity through time. Three stand types were distinguished, based on a gradient of abundance of tree host species for the eastern spruce budworm. The impact of gaps was evaluated on the basis of changes in the number, the period of recruitment, and the composition of tree saplings present within gap areas. Changes were measured along the gap size gradient, and according to the pattern of recent budworm epidemics. Results: The gap fraction is highly variable (18%‐64%) and is on average relatively high (42%). Gap sizes have a positively skewed distribution. In most cases the growth rate among gap filling saplings increased sufficiently to date disturbance events. The composition and the structure of understory trees were affected by gap formation. The number of shade‐intolerant tree species did increase during or following periods of particularly severe canopy disturbances. However, the establishment or survival of shade intolerant species was not restricted to larger gaps or more intensely disturbed periods. Conclusions: In sub‐boreal forests of Eastern Canada, small scale disturbances in the tree canopy influence stand regeneration dynamics, but not to the extent that parameters such as sapling composition and recruitment patterns depend on gap regime characteristics.  相似文献   

16.
To investigate complex growth compensation patterns, white pine (Pinus strobus L.) seedlings were clipped to simulate different herbivory levels. Seedlings were growing with different understory competition levels (created through monthly weeding vs no brush control) under a range of overstory canopy closures. Compensation patterns varied for the different growth and size measures. After one growing season, seedlings did not fully compensate for lost biomass regardless of the competitive environments of the seedlings. Although relative height growth was stimulated by light intensity clipping (20-40% of last-year shoots removed), relative diameter growth, total biomass, and biomass growth of seedlings declined sharply with increasing clipping intensity. Likewise, all growth parameters declined with increasing interspecific competition. Results showed that seedlings in highly competitive environments showed smaller growth loss due to clipping than those in competition-free environments, presumably because seedlings experiencing high interspecific competition devoted more energy to maintaining apical dominance and a balanced shoot-root ratio. While competition from canopy trees altered compensatory patterns, competition from understory vegetation only altered the magnitude, but not the patterns, of compensatory growth. We suggest that compensatory growth follows a complex pattern that will vary with the parameters measured, competitive conditions, and clipping intensities. Our results support the assertion that overcompensation may be an adaptation to competitive ability, rather than a response to herbivory itself.  相似文献   

17.
Light availability is an important modulator of seedling growth and plant–herbivore dynamics. Logging increases light levels in forests, potentially altering herbivore–plant interactions that drive seedling establishment. We conducted a transplant experiment to evaluate how logging and herbivory affect seedling growth and survival in three shade‐tolerant tree species, at paired canopy gap and understory sites in logged forest and an adjacent unlogged area in central Amazonia (Brazil). Seedlings were either left exposed to naturally occurring insect herbivores or protected from insects by a fine netting structure. We measured the herbivore damage and growth rate of seedlings after 18 mo. In general, logged areas received more light than unlogged sites. Growth and herbivory rates were positively influenced by light, and herbivory was also influenced positively by logging. In gaps, increased growth mitigated foliar damage. Logging resulted in a loss of foliar tissue due to increased herbivory. Herbivory rates were higher in the understory of logged sites than in that of unlogged understory sites, but growth was similar in these areas. Thus, the understory of logged areas provided the least favorable sites for shade‐tolerant tree regeneration, due to higher herbivory rates. The effect of logging on biotic interactions can extend beyond the gaps it creates into untouched understory sites. To our knowledge, this is the first time such a pattern has been observed, highlighting the importance of evaluating the impact of logging on biotic interactions.  相似文献   

18.
对湖南栎类天然次生林不同林分类型的林下植被生物量特征及其影响因素进行研究。结果表明: 将50块样地划分为甜槠-鹿角杜鹃混交林、亮叶水青冈-箭竹混交林、石栎-虎刺+山茶混交林、甜储+枹栎-鹿角杜鹃混交林、青冈栎-油茶+杜鹃混交林5种林分类型。5种林分的林下植被生物量均较低,不超过2.3 t·hm-2。5种林分类型的林下灌木生物量没有显著差异,甜槠-鹿角杜鹃混交林草本层生物量显著低于其他4种林分类型。影响不同林分林下植被生物量的因素不同。在甜槠-鹿角杜鹃混交林,草本层生物量与郁闭度、角尺度呈显著负相关,林下植被总体生物量与开敞度呈显著正相关;在亮叶水青冈-箭竹混交林,灌木层生物量与林分的角尺度、郁闭度呈显著负相关,草本层生物量与林下植被总体生物量与混交度呈显著正相关;在石栎-虎刺+山茶混交林,草本层生物量与林分的聚集指数呈显著正相关;在甜储+枹栎-鹿角杜鹃混交林,灌木层生物量与林分的混交度呈显著负相关,草本层生物量与林分的株数密度呈显著正相关;而在青冈栎-油茶+杜鹃混交林,林分结构与林下生物量没有显著相关关系。对林下植被生物量进行调整,应该以调整林分水平分布格局为主,综合考虑林分遮盖程度与树种结构。  相似文献   

19.
Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots.  相似文献   

20.
Enoki  T.  Abe  A. 《Plant Ecology》2004,173(2):283-291
We examined the spatial distribution of saplings in relation to topography and stand structure in a subtropical evergreen broad-leaved forest in the northern part of Okinawa Island, Japan. The distributions of most species were influenced mainly by topography but also by canopy openness. Species were arranged along a topographical gradient from concave areas with low canopy openness to convex areas with high canopy openness. Canopy species were arranged along a gradient from unstable fertile areas to stable infertile areas. Species occurring mostly in convex areas had a narrower distribution range than those in concave sites. Thus, habitat heterogeneity provided by topography and stand structure appears to be important factors for maintaining high species diversity in the understory of this subtropical evergreen broad-leaved forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号