首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jerome J. Howard 《Oecologia》1990,82(3):394-401
Summary Leafcutting ants have strong among- and within-plant preferences, and generally abandon plants long before they are completely defoliated. Two tropical deciduous forest tree species preferred by the leafcutting ant Atta colombica were studied to determine how variation in resource quality affects ant selectivity and partial defoliation of plants. Significant differences in palatability and leaf characteristics of Spondias mombin and Bursera simaruba were found among trees and among leaf types within trees, but not among branches within trees. No short-term responses to experimental defoliation of up to 50% of total canopy were found in either species. Leaf nutrient and poisture content were positively correlated, and phenolic content negatively correlated, with the palatability of Spondias mombin, a species containing hydrolyzable tannins. Leaf moisture and phenolic content were both positively correlated with the palatability of Bursera simaruba, which contains predominantly condensed tannins. The results suggest that variation in leaf quality among and within plants is at least a partial explanation for ant selectivity and partial defoliation of preferred species. There is no evidence that rapidly induced changes in plant chemistry affect ant decisions to abandon these plants. Instead, it appears likely that ants abandon plants once high-quality leaf patches are exhausted. Quantitative variation in leaf nutrients, moisture, and secondary chemicals all appear to contribute to ant preferences for individuals and tissues of highly palatable plants.  相似文献   

2.
Lincoln  D. E. 《Plant Ecology》1993,(1):273-280
The carbon/nutrient ratio of plants has been hypothesized to be a significant regulator of plant susceptibility of leaf-eating insects. As rising atmospheric carbon dioxide stimulates photosynthesis, host plant carbon supply is increased and the accompanying higher levels of carbohydrates, especially starch, apparently dilute the protein content of the leaf. When host plant nitrogen supply is limited, plant responses include increased carbohydrate accumulation, reduced leaf protein content, but also increased carbon-based defensive chemicals. No change, however, has been observed in the concentration of leaf defensive allelochemicals with elevated carbon dioxide during host plant growth. Insect responses to carbon-fertilized leaves include increased consumption with little change in growth, or alternatively, little change in consumption with decreased growth, as well as enhanced leaf digestibility, reduced nitrogen use efficiency, and reduced fecundity. The effects of plant carbon and nutrient supply on herbivores appear to result, at least in part, from independent processes affecting secondary metabolism.  相似文献   

3.
Summary We investigated the effects of nitrogen fertilization upon the concentrations of nitrogen, condensed tannin and phenolic glycosides of young quaking aspen (Populus tremuloides) leaves and the quality of these leaves as food for larvae of the large aspen tortrix (Choristoneura conflictana), a Lepidopteran that periodically defoliates quaking aspen growing in North America. Nitrogen fertilization resulted in decreased concentrations of condensed tannin and phenolic glycosides in aspen leaves and an increase in their nitrogen concentration and value as food for the large aspen tortrix. These results indicate that plant carbon/nutrient balance influences the quality of aspen leaves as food for the large aspen tortrix in two ways, by increasing the concentrations of positive factors (e.g. nitrogen) and decreasing the concentrations of negative factors (eg. carbon-based secondary metabolites) in leaves. Addition of purified aspen leaf condensed tannin and a methanol extract of young aspen leaves that contained condensed tannin and phenolic glycosides to artificial diets at high and low levels of dietary nitrogen supported this hypothesis. Increasing dietary nitrogen increased larval growth whereas increasing the concentrations of condensed tannin and phenolic glycosides decreased growth. Additionally, the methanol extract prevented pupation. These results indicate that future studies of woody plant/insect defoliator interactions must consider plant carbon/nutrient balance as a potentially important control over the nutritional value of foliage for insect herbivores.  相似文献   

4.
BACKGROUND AND AIMS: Both nutrient availability and defoliation affect the carbon-nutrient balance in plants, which in turn influences biomass allocation (e.g. shoot-to-root ratio) and leaf chemical composition (concentration of nitrogen and secondary compounds). In this study it is questioned whether defoliation alters biomass allocation and chemical defence in a similar fashion to the response to nutrient deficiency. METHODS: Current-year seedlings of Quercus serrata were grown with or without removal of all leaves at three levels of nutrient availability. KEY RESULTS: Plant nitrogen concentration (PNC), a measure of the carbon-nutrient balance in the plant, significantly decreased immediately after defoliation because leaves had higher nitrogen concentrations than stems and roots. However, PNC recovered to levels similar to or higher than that of control plants in 3 or 6 weeks after the defoliation. Nitrogen concentration of leaves produced after defoliation was significantly higher than leaf nitrogen concentration of control leaves. Leaf mass per plant mass (leaf mass ratio, LMR) was positively correlated with PNC but the relationship was significantly different between defoliated and control plants. When compared at the same PNC, defoliated plants had a lower LMR. However, the ratio of the leaf to root tissues that were newly produced after defoliation as a function of PNC did not differ between defoliated and control plants. Defoliated plants had a significantly lower concentration of total phenolics and condensed tannins. Across defoliated and control plants, the leaf tannin concentration was negatively correlated with the leaf nitrogen concentration, suggesting that the amount of carbon-based defensive compounds was controlled by the carbon-nutrient balance at the leaf level. CONCLUSIONS: Defoliation alters biomass allocation and chemical defence through the carbon-nutrient balance at the plant and at the leaf level, respectively.  相似文献   

5.
Osier TL  Lindroth RL 《Oecologia》2004,139(1):55-65
This research tested the long-term effects of defoliation on aspen chemistry and growth in relation to genotype and nutrient availability. We grew saplings of four aspen genotypes in a common garden under two conditions of nutrient availability, and subsequently subjected them to two levels of artificial defoliation. Artificial defoliation suppressed plant growth, and saplings of the four genotypes did not show evidence of genetic variation in tolerance to defoliation. Phenolic glycoside concentrations did not respond to defoliation, but were influenced by genotype and nutrient availability. Condensed tannins responded to defoliation and varied among genotypes. Although defoliation affected condensed tannins, plant quality was not altered in a manner important for gypsy moth performance. Regression analyses suggested that phenolic glycoside concentrations accounted for most of the variation in insect performance. The lack of a strong response important for herbivores was surprising given the severity of the defoliation treatment (nearly 100% of leaf area was removed). In this study, plant genotype was of primary importance, nutrient availability was of secondary importance and long-term induced responses were unimportant as determinants of insect performance.  相似文献   

6.
Pepper plants were grown under different water and nitrogen availabilities that produced severe nitrogen limitations and mild water stress. Nitrogen limitation produced lower leaf N content, higher C:N, and higher leaf content of phenolic compounds, in consonance with the carbon/nutrient balance hypothesis. Nitrogen limitation also produced lower nutritional quality of leaves, with lower relative growth rates and lower efficiency of conversion of ingested biomass on the polyphagous herbivoreHelicoverpa armigera. The biomass gained per gram nitrogen ingested also tended to be lower in those insects feeding on nitrogen-limited plants, in parallel with their higher phenolic content. However, larvae fed on nitrogen-limited plants did not increase the ingestion of food to compensate for the N deficiency of leaves. The mild water stress, which only slightly tended to increase the phenolic content of pepper leaves, had no significant effect on nutritional indices.  相似文献   

7.
Abundant nitrogen improves seedling growth and establishment. Vigorous growth brings about changes in rates and patterns of plant development and changes in the relationship between primary and secondary metabolism, which may make seedlings more susceptible to herbivores and pathogens than are slow-growing seedlings. We studied how nitrogen fertilization and manual defoliation of source leaves affect growth, carbon allocation, and developmental instability in cloned seedlings of white birch (Betula pubescens Ehrh.). Biomass was higher, whereas concentrations of most classes of phenolic compounds were lower in the nitrogen-rich environment. Interestingly, fertilization did not change the concentrations of cell wall-bound proanthocyanidins, which represent an important fraction of the group of phenolic compounds. Nitrogen enrichment increased levels of fluctuating asymmetry, an index of developmental instability. This result confirms that not only stress but also any deviation from normal resource availability may increase leaf developmental instability in birches. In contrast to fertilization, a one-time defoliation of source leaves did not shape seedling growth, development, or carbon allocation. This could be the result of compensatory growth or of the fact that the defoliation treatment was not strong enough to induce detectable effects until the end of the growing season.  相似文献   

8.
Variation in tolerance to nutrient limitations may contribute to the differential success of sugar maple ( Acer saccharum Marsh.) and red maple ( Acer rubrum L.) on acid soils. The objectives of this study were to examine these relationships as influenced by light environment and test whether sensitivity to nutrient stress is mediated by oxidative stress. First-year sugar maple and red seedlings were grown on forest soil cores contrasting in nutrient availability under high or low light intensity. Foliar nutrition, photosynthesis, growth and antioxidant enzyme activity were assessed. Photosynthesis and growth of sugar maple were significantly lower on nutrient-poor soils and were correlated with leaf nutrient status with Ca and P having the strongest influence. For red maple, only chlorophyll content showed sensitivity to the nutrient-poor soils. High light exacerbated the negative effects of nutrient imbalances on photosynthesis and growth in sugar maple. Antioxidant enzyme activity in sugar maple was highest in seedlings growing on nutrient-poor soils and was inversely correlated with photosynthesis, Ca, P, and Mg concentrations. These results suggest that: (1) sugar maple is more sensitive to nutrient stresses associated with low pH soils than red maple; (2) high light increases sugar maple sensitivity to nutrient stress; (3) the negative effects of nutrient imbalances on sugar maple may be mediated by oxidative stress.  相似文献   

9.
Clair SB  Carlson JE  Lynch JP 《Oecologia》2005,145(2):257-268
Soil acidification and the disruption of nutrient cycles appear to be important factors that weaken sugar maple resistance to both abiotic and biotic stresses and predispose it to decline symptoms. Although connections between edaphic stress and decline symptoms have been identified, very little is known about the physiological and biochemical mechanisms that underlie this relationship. In this study, we tested the hypothesis that foliar nutrient imbalances impair the photosynthetic apparatus of sugar maple through oxidative stress. We examined leaf nutrition, photosynthesis and antioxidant enzyme activity (a biomarker of oxidative stress) from early June to late August in three-paired overstory sugar maple stands on Pennsylvania’s Allegheny Plateau that contrast in soil nutrient availability according to slope position. Beginning in early June, trees on upper slopes (nutrient-poor) had significantly lower foliar Ca and Mg concentrations and significantly higher foliar Mn concentrations than trees on lower slopes. These differences increased throughout summer peaking in late August. Photosynthesis and antioxidant enzyme activity closely reflected changes in foliar nutrient status throughout the summer. In the latter half of the summer, leaf gas exchange and chlorophyll content were significantly lower and antioxidant enzyme activity was significantly higher in stands on upper slope soils. At the end of August, leaf nutrient imbalances corresponded with lower rates of photosynthesis and higher antioxidant enzyme activity, suggesting that foliar nutrient imbalances may impair sugar maple function through mechanisms of oxidative stress.  相似文献   

10.
Volker Nicolai 《Oecologia》1988,75(4):575-579
Summary Factors influencing decomposition in European forests growing on different soils were studied in stands dominated by the European beechFagus sylvatica L. Phenolic contents of freshly fallen leaves ofF. sylvatica growing on nutrient-poor soils (acid sandy soil) were higher than those of similar leaves on nutrient-rich soils (calcareous mull soil). Analysis of fallen leaves of different ages showed rapid decay of phenolics during the first winter on the ground. After 1 year the phenolic content of leaves ofF. sylvatica growing on nutrient-poor soils was still twice as high as in similar leaves on nutrient-rich soils. Field and laboratory experiments showed that a major decomposer (Oniscus asellus, Isopoda) preferred leaves from trees on nutrient-rich soils. Mineral contents of leaves ofF. sylvatica growing on different soils differed: on rich soils leaves had higher contents of Ca, Mg, Na, and K. These elements are important nutrients for decomposers. The distribution of major decomposers reflects the mineral content of their diet, which in turn reflects soil type. Different rates of leaf turnover and nutrient turnover in different forest ecosystems (even when the same tree species is dominant) are due to the decomposing system, which is influenced by the phenolic and mineral contents of the leaves.  相似文献   

11.
The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest–savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils.  相似文献   

12.
Ontogenetic changes in architecture, carbohydrate reserves, and resource allocation can constrain the ability of plants to compensate for herbivore damage. To evaluate ontogenetic changes in compensation, saplings and reproductive individuals of the tropical tree Casearia nitida were subjected to three levels of defoliation (0, 25, and 75% leaf area removed) and regrowth was quantified. The impact of defoliation on fruit production was evaluated in reproductive trees. In addition, the influence of defoliation on carbohydrate reserves and on the production of phenolic compounds was assessed. Plants at both stages were able to compensate for 25% leaf area loss, but only saplings were able to compensate at the 75% defoliation level. Negative impacts of defoliation on reproductive trees were also suggested by their tendency to produce fewer fruits when defoliated. The concentration of nonstructural carbohydrates decreased with damage in saplings but not in reproductive trees, suggesting an ontogenetic stage-dependent impact of defoliation on carbohydrate reserves. The concentration of phenolic compounds in leaves decreased with increasing leaf damage in both ontogenetic stages. This suggests a resource based trade-off between defense and compensation. The results from this study suggest that ontogeny needs to be considered when assessing plant responses to herbivore damage.  相似文献   

13.
Summary Both mechanical damage to mountain birch foliage and rearing of moth larvae on the trees reduced the growth of Epirrita autumnata larvae reared on these trees in the following year. The effects of physical damage and some other cues from insects were additive. On bird cherry the performance of Epirrita larvae was equal on untreated trees and on trees artificially defoliated in the previous year, but larval growth was reduced on previously insect-damaged branches. With mountain ash just physical damage per se reduced the performance of Epirrita larvae. On Salix phylicifolia there were no significant differences in the growth or survival of Epirrita on untreated control bushes and on bushes with partial larval damage during the previous year. Among untreated control trees the growth and survivorship of Epirrita were higher on fast-growing willow and bird cherry than on the slow-growing mountain birch. Mountain birch and mountain ash, the two deciduous tree species adapted to nutrient-poor soils, showed delayed inducible resistance triggered by defoliation (artificial or insect-made). This supports the hypothesis that delayed inducible resistance may be a passive response due to nutrient-stress caused by defoliation. On the other hand, the additional increase in the resistance of mountain birch triggered by specific cues from insects suggests that this response may be an evolved defense against leaf-eating insects.  相似文献   

14.
Several recent studies have shown that plant invasions can occur in resource-poor and relatively undisturbed habitats. It is, therefore, important to investigate whether and how life-history traits of species invasive in such habitats differ from those of species that are only invasive in disturbed and resource rich habitats. We compared the growth of seedlings of native and invasive tree species from nutrient-poor secondary forests in the tropical Seychelles. We hypothesised that the relative performance of the two groups would change predictably along resource gradients, with native species performing better at low levels of resource availability and invasive species performing better at higher levels. To test this hypothesis, we performed a common garden experiment using seedlings of six invasive and seven native tree species grown under three levels of light (65, 11 and 3.5% of ambient light) and two of nutrients (low and high). Due to large variation among species, differences in growth rates (RGR) were not significant among seedlings of the native and the invasive species. However, seedlings of the invasive species showed higher specific leaf areas (SLA) and higher leaf nutrient contents than seedlings of the native species. They also exhibited greater plasticity in biomass and nutrient allocation (i.e., greater plasticity in LAR, RSR and leaf nutrient contents) in response to varying resource availability. However, differences between the mean values of these parameters were generally small compared with variation within groups. We conclude that successful invaders on nutrient-poor soils in the Seychelles are either stress-tolerant, possessing growth traits similar to those of the native species, or fast-growing but adapted to nutrient-poor soils. In contrast, the more typical, fast-growing alien species with no particular adaptations to nutrient-poor soils seem to be restricted to relative nutrient-rich sites in the lowlands. The finding—that some introduced species thrive in resource-poor habitats—suggests that undisturbed habitats with low resource availability may be less resistant to plant invasions than was previously supposed.  相似文献   

15.
This study examined the effects of elevated CO2 on secondary metabolites for saplings of tropical trees. In the first experiment, nine species of trees were grown in the ground in open-top chambers in central Panama at ambient and elevated CO2 (about twice ambient). On average, leaf phenolic contents were 48% higher under elevated CO2. Biomass accumulation was not affected by CO2, but starch, total non-structural carbohydrates and C/N ratios all increased. In a second experiment with Ficus, an early successional species, and Virola, a late successional species, treatments were enriched for both CO2 and nutrients. For both species, nutrient fertilization increased plant growth and decreased leaf carbohydrates, C/N ratios and phenolic contents, as predicted by the carbon/nutrient balance hypothesis. Changes in leaf C/N levels were correlated with changes in phenolic contents for Virola (r=0.95, P<0.05), but not for Ficus. Thus, elevated CO2, particularly under conditions of low soil fertility, significantly increased phenolic content as well as the C/N ratio of leaves. The magnitude of the changes is sufficient to negatively affect herbivore growth, survival and fecundity, which should have impacts on plant/herbivore interactions.  相似文献   

16.
Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant community assemblage may be a general property of mound building termites.  相似文献   

17.
We studied growth of the mountain birch, and the role of foliage phenols, nitrogen, and variance in the timing of bud burst, as potential defensive characters, in Finnish Lapland in 1975–1979. Annual and local variation both in phenol and nitrogen concentration of foliage were significant. Individual trees retained their position in the foliage and nitrogen distribution of the population in successive years, as well as in the order of leaf flush in spring. Growth of twigs, mature leaf size, and ability of trees to recover in the year following artificial defoliation correlated positively with the sum of degree days in the previous growing season. Foliage nitrogen correlated negatively with foliage phenols in within-site comparisons. Twig growth correlated negatively with foliage phenols, particularly in growing seasons following cool summers, but did not correlate with foliage nitrogen. Birches flushing early did not grow more than birches flushing late. Between-site differences in foliage phenol content were mainly determined by abiotic conditions, like temperature and nutrient availability. In a between-site comparison insect chewing marks in leaves correlated positively with foliage phenols as well as with nitrogen; intensity of invertebrate predation presumably explained variable herbivory between the sites. In a within-site comparison trees with the highest foliage phenol content had few herbivores only at the site with the highest average phenol level.  相似文献   

18.
Although factors affecting plant growth and plant carbon/nutrient balance – e.g., light availability and defoliation by herbivores – may also propagate changes in below‐ground food webs, few studies have aimed at linking the above‐ground and below‐ground effects. We established a 29‐week laboratory experiment (~one growing season) using autotrophic microcosms to study the effects of light and defoliation on plant growth, plant carbon/nutrient balance, soil inorganic N content, and microbial activity and biomass in soil. Each microcosm contained three substrate layers – mineral soil, humus and plant litter – and one Nothofagus solandri var. cliffortioides seedling. The experiment constituted of the presence or absence of two treatments in a full factorial design: shading (50% decrease in light) and artificial defoliation (approximately 50% decrease in leaf area in the beginning of the growing season). At the end of the experiment a range of above‐ground and below‐ground properties were measured. The shading treatment reduced root and shoot mass, root/shoot ratio and leaf production of the seedlings, while the defoliation treatment significantly decreased leaf mass only. Leaf C and N content were not affected by either treatment. Shading increased NO 3–N concentration and decreased microbial biomass in humus, while defoliation did not significantly affect inorganic N or microbes in humus. The results show that plant responses to above‐ground treatments have effects which propagate below ground, and that rather straightforward mechanisms may link above‐ground and below‐ground effects. The shading treatment, which reduced overall seedling growth and thus below‐ground N use and C allocation, also led to changes in humus N content and microbial biomass, whereas defoliation, which did not affect overall growth, did not influence these below‐ground properties. The study also shows the carbon/nutrient balance of N. solandri var. cliffortioides seedlings to be highly invariant to both shading and defoliation.  相似文献   

19.
Productivity of trees can be affected by limitations in resources such as water and nutrients, and herbivory. However, there is little understanding of their interactive effects on carbon uptake and growth. We hypothesized that: (1) in the absence of defoliation, photosynthetic rate and leaf respiration would be governed by limiting resource(s) and their impact on sink limitation; (2) photosynthetic responses to defoliation would be a consequence of changing source:sink relationships and increased availability of limiting resources; and (3) photosynthesis and leaf respiration would be adjusted in response to limiting resources and defoliation so that growth could be maintained. We tested these hypotheses by examining how leaf photosynthetic processes, respiration, carbohydrate concentrations and growth rates of Eucalyptus globulus were influenced by high or low water and nitrogen (N) availability, and/or defoliation. Photosynthesis of saplings grown with low water was primarily sink limited, whereas photosynthetic responses of saplings grown with low N were suggestive of source limitation. Defoliation resulted in source limitation. Net photosynthetic responses to defoliation were linked to the degree of resource availability, with the largest responses measured in treatments where saplings were ultimately source rather than sink limited. There was good evidence of acclimation to stress, enabling higher rates of C uptake than might otherwise have occurred.  相似文献   

20.
BACKGROUND AND AIMS: Patterns and variations in concentration of carbon-based secondary compounds in plant tissues have been explained by means of different complementary and, in some cases, contradictory plant defence hypotheses for more than 20 years. These hypotheses are conceptual models which consider environmental impacts on plant internal demands. In the present study, a mathematical model is presented, which converts and integrates the concepts of the 'Growth-Differentiation Balance' hypothesis and the 'Protein Competition' model into a dynamic plant growth model, that was tested with concentration data of polyphenols in leaves of juvenile apple, beech and spruce trees. The modelling approach is part of the plant growth model PLATHO that considers simultaneously different environmental impacts on the most important physiological processes of plants. METHODS: The modelling approach for plant internal resource allocation is based on a priority scheme assuming that growth processes have priority over allocation to secondary compounds and that growth-related metabolism is more strongly affected by nitrogen deficiency than defence-related secondary metabolism. KEY RESULTS: It is shown that the model can reproduce the effect of nitrogen fertilization on allocation patterns in apple trees and the effects of elevated CO(2) and competition in juvenile beech and spruce trees. The analysis of model behaviour reveals that large fluctuations in plant internal availability of carbon and nitrogen are possible within a single vegetation period. Furthermore, the model displays a non-linear allocation behaviour to carbon-based secondary compounds. CONCLUSIONS: The simulation results corroborate the underlying assumptions of the presented modelling approach for resource partitioning between growth-related primary metabolism and defence-related secondary metabolism. Thus, the dynamical modelling approach, which considers variable source and sink strengths of plant internal resources within different phenological growth stages, presents a successful translation of existing concepts into a dynamic mathematical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号