首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary In flies, for example the blowfly Calliphora erythrocephala, the thorax has fused to form a chitinous capsule. In it we find three functional types of flight muscles, the indirect flight muscles, the direct, and the tension muscles. The indirect or wing beat muscles transfer their power to the capsule which is capable of oscillating. They are suspended nearly horizontally and vertically. The direct muscles used for steering insert laterally on the capsule and go to the wing joint. The third functional type of flight muscle serves to put the lateral walls of the thorax under tension. The site and morphology of the flight muscles are described in detail, making use of 3-dimensional drawings. The flight muscles of Calliphora erythrocephala (Heide 1968) and their functions are compared with those of other dipterans described by different authors.With support of the Deutsche Forschungsgemeinschaft to Professor Nachtigall  相似文献   

3.
Alfred Wisser 《Zoomorphology》1987,106(5):261-268
Summary The blowfly Calliphora erythrocephala rotates its wings, i.e. changes the geometrical angle of attack, generating forces and moments for flight steering. There are two possibile ways to regulate this angle. The mechanisms for these movements are described. (1) The leading edge and the anterior part of the wing — between the costal vein and radial vein 4 — are pronated automatically due to the interaction of the moving parts during the downstroke. They are supinated during the upstroke. This is basic automatic regulation. (2) The posterior part of the wing — behind the anterior cross vein — is pronated and supinated independently of wing-drive. This is wing-drive independent additional regulation.Abbreviations a.c anterior cross vein - a.n anal veins - a.t.l anterior tergal lever - a.w anterior part of the wing - b.z bending zone - co costal vein - cr crossing of the tendons of the posterior notal wing process - c.s cross section - cu cubital vein - f fit or turning point of ventral radial vein 1 - h.a horizontal axis of pterale III - h.c humeral cross vein - h.co head of costal vein - h.r head of radial vein - k Klöppel - l.a longitudinal axis - me median vein - mp middle plate - ms mesoscutum - p anterior process of the anal veins - p.c posterior cross vein - pl pleurum - p.n.w.p posterior notal wing process - p.n.w.p 1–4 muscles 1–4 of the posterior notal wing process - pt I–III pterale I–III - p.t.l posterior tergal lever - p.w. posterior part of the wing - p.w.j pleural wing joint - r 1–4 radial veins 1–4 - r.s. ring stiffenings - sc subcostal vein - s.p semicircular part of the middle plate - s.t subalar tendon - t.c tip cross vein - te tegula - t.st thin strips - t.v.r tooth of ventral radial vein - v.a. vertical axis of pterale III - w wing - III 1–4 muscles 1–4 of pterale III  相似文献   

4.
Summary The brain of the blowfly, Calliphora erythrocephala, has been studied by means of the peroxidase-antiperoxidase immunocytochemical method, with the use of antibodies to bovine pancreatic polypeptide (BPP). A number of immunoreactive neurones have been localised, some corresponding to neurones previously identified tentatively as neurosecretory. This finding is further evidence that biologically active peptides, previously considered to be vertebrate, also exist in invertebrates. It also supports the concept of their evolutionary origin in nervous tissue.  相似文献   

5.
Summary The early development of taste sensilla has been studied with special emphasis on cilia, dendrite, and pore formation.In the 39-h stage (the first stage investigated) differentiation of sensilla is already under way. The mechanisms of differentiation of dendrites (39–48 h) deviate from the mechanisms described for differentiation of true cilia. In taste hairs the centrioles meet in the tip of the narrowed apical region of the sensory neuron. Together they sink deeper into this region and line up coaxially, thus forming the basal body complex. Thereafter, lateral contacts between this complex and the plasma membrane of the neuron are established. Formation of open connections between the trichogen lumen of the hair and the environment, or the dendrite lumen, was not observed.Electrophysiological data indicate that the sensilla become functional from 3 days before emergence onwards.List of Abbreviations B Basal body complex - bc Basal compartment - bs Basal sheath - bl Basement lamina - D Dendrite(s) - EPC Non-sensillar epithelial cells - ES Ecdysial sheath - GERL Granular endoplasmatic reticulum-lysosomes - HS Hemolymph space - P Protrusions - PRN Prospective receptor neuron - RER Rough endoplasmatic reticulum - RN Receptor neuron - n Neck - THC Thecogen cell - TOC Tormogen cell - TRC Trichogen cell - TRS Trichogen sprout  相似文献   

6.
Summary The distribution of putative cholinergic neurons in the lamina of the blowfly Calliphora erythrocephala was studied by immunocytochemical and histochemical methods. Three different antibodies directed against the AChsynthesizing enzyme, choline acetyltransferase (ChAT), revealed a cholinergic population of fibres running parallel to the laminar cartridges, which have branch-like structures at the distal lamina border. Cell bodies in the chiasma next to the lamina border were also labelled by the anti-ChAT antibodies. Monopolar cell bodies in the nuclear layer were faintly labelled. The distribution of the acetylcholine hydrolyzing enzyme, acetylcholine esterase (AChE), was revealed by histochemical staining and was similar to the ChAT immunocytochemistry. The arrangement of ChAT positive fibres in transverse and longitudinal sections and the distribution of AChE stained fibres indicate that the amacrine cells of the lamina are cholinergic cells.We dedicate this work to Prof. F. Zettler who passed away in fall 1988: K.-H. Datum, I. Rambold  相似文献   

7.
Summary Four envelope cells are responsible for the formation of the basiconical sensilla of Calliphora. They are the thecogen, trichogen, and tormogen cells, and envelope cell 4. In early stages of development the still subepithelial sensory cilia are completely enclosed by the innermost thecogen cell. The first formation movements are initiated by a growth thrust of the hair-forming cell into the exuvial space. The sensory cilia only begin to grow into the hair anlage when the hair-forming cell has almost reached its final length. As soon as growth is completed the trichogen cell, tormogen cell, and envelope cell 4 start to excrete cuticular material. The trichogen cell forms the perforated part of the hair shaft and the stimulus-conducting system consisting of the pore tubules. The tormogen cell is responsible for the excretion of the basal non-perforated hair shaft and sheath cell 4 forms the proximal part of the socket region. The thecogen cell only begin to produce dendritic sheath material when the sensory hair is almost complete.Approximately 7–8 days after pupation the tormogen cell degenerates, having, by this time, produced about two-thirds of the sensilla cuticle. The surrounding envelope cells incorporate cell fragments of the tormogen cell. The trichogen cell continues the secretion where the tormogen cell left off. When the secretion of cuticle is finished the sheath cells begin to withdraw towards the proximal direction and to form microvilli on the apical membrane. The resulting outer receptor lymph space is bordered by envelope cell 4 and the trichogen and thecogen cells. The tormogen cell is absent in the sensilla of the imago.Abbreviations DS dendritic sheath - E4 envelope cell 4 - Ex exuvial space - G glial cell - iD inner dendritic segment - iRL inner receptor lymph space - oRL outer receptor lymph space - oD outer dendritic segment - P pore - PT pore tubules - S sensory cell - T thecogen cell - TO tormogen cell - TR trichogen cell Part 1 of a dissertation accepted by the Faculty of Bio- and Geosciences, University of Karlsruhe  相似文献   

8.
Summary Calliphora erythrocephala has cross-striated cardiac muscle cells with A, I and Z-bands. The diameters of the myosin and actin filaments are 200–250 Å and 85 Å respectively and the length of the myosin filaments (A-band) is approximately 1.5 . Usually 8–10 actin filaments surround each myosin filament.The myocardial cells show a well-developed membrane system and interior couplings. A perforated sheet of SR envelopes the myofibrils at the A-band, dilates into flattened cisternae at both A-I band levels before it merges into a three-dimensional net-work between the actin filaments of the I-bands and between the dense bodies of the discontinuous Z-discs. The T-system consists of broad flattened tubules running between the myofibrils at the A-I band levels forming dyads with the SR-cisternae. Longitudinal connections between the transverse (T-) tubules often occur.It is suggested that this well-developed SR may be an adaptation to facilitate a rapid contraction/relaxation frequency by an effective Ca2+ uptake.  相似文献   

9.
10.
Summary The postembryonic development of serotonin-immunoreactive (5-HTi) neurons was studied in the optic lobe of the blowfly. In the adult fly there are 24 5-HTi neurons invading each optic lobe. The perikarya of two of these neurons are situated in the dorso-caudal part of the protocerebrum (LBO-5HT neurons; large bilateral optic lobe 5-HTi neurons). The cell bodies of the remaining 22 neurons are located anteriorly at the medial base of the medulla (2 innervating the lobula, LO-5HT neurons; and 20 neurons innervating the medulla, ME-5HT neurons). The two central neurons (LBO-5HT neurons) are derived from metamorphosing larval neurons, while the ME- and LO-5HT neurons are imaginai optic lobe neurons differentiating during pupal development.The 5-HTi neurons of the optic lobe seem to have different ancestors. The LBO-5HT neurons are probably derived from segmental protocerebral neuroblasts, whereas the ME-and LO-5HT neurons are most likely derived from the inner optic anlage. The first 5-HTi fibers to reach the imaginal optic lobes are seen in the late third instar larva and are derived from the LBO-5HT neurons. The first ME- and LO-5HT neurons become immunoreactive at 24 h (10%) pupal development. At about 96 h (40%) of pupal development all the 5-HTi neurons of the optic lobes have differentiated and attained their basic adult morphology. The further development mainly entails increase in volume of arborizations and number of finer processes. The differentiation and outgrowth of 5-HTi processes follows that of, e.g., columnar neurons in the optic lobe neuropils. Hence, 5-HTi processes invade neuropil relatively late in the differentiation of the optic lobe.  相似文献   

11.
As a first approach to testing the working hypothesis that glycosphingolipids are functionally involved in the ontogeny of insects, their chemical distribution in larval organs was determined and any stadium-correlated differences documented. Selected organs, i.e., the fatbody, striated muscle, intestinal tract, salivary glands, imaginal discs, and central nervous system, were dissected from seven-day-old larvae of the blowfly, Calliphora vicina, and their glycolipids isolated. Two-dimensional, high-performance thin-layer chromatography was used to separate the neutral and acidic glycolipids of each organ. Significantly different total glycolipid component-patterns were obtained for the individual organs, whereby, except for a number of additional uncharacterized components in the intestinal tract, the neutral glycolipids of all organs were found to be qualitatively similar. However, major quantitative differences between the selected organs were found in their total glycolipid-carbohydrate contents, as well as the respective quantitative neutral glycosphingolipid-component distributions. The acidic glycolipids showed pronounced qualitative as well as quantitative organ-dependent variations. Whereas the highest proportion of uncharged glycolipids was characteristic of the fatbody, a high proportion of zwitterionic glycolipid-components was observed to be typical of the central nervous system and imaginal discs, i.e., of organs persisting during larval life and throughout metamorphosis. Imaginal disc glycolipids were distinguished by their high content of acidic glycolipids, a putative reflection of the functional role of these glycoconjugates in regulated cell reorganization during metamorphosis.  相似文献   

12.
The Leu-callatostatins are a series of four neuropeptides isolated from nervous tissues of the blowfly Calliphora vomitoria that show C-terminal sequence homology to the allatostatins of cockroaches. The allatostatins have an important role in the reproductive processes of insects as inhibitors of the synthesis and release of juvenile hormone from the corpus allatum. In this study, the distribution of the Leu-callatostatin-immunoreactive neurones and endocrine cells has been mapped in C. vomitoria and, in contrast to the cockroach allatostatins, it has been shown that there is no cytological basis to suggest that the dipteran peptides act as regulators of juvenile hormone. Although occurring in various neurones in the brain and thoracico-abdominal ganglion, there is no evidence of Leu-callatostatin-immunoreactive pathways linking the brain to the corpus allatum, or of immunoreactive terminals in this gland. Three different types of functions for the Leu-callatostatins are suggested by the occurrence of immunoreactive material in cells and by the pathways that have been identified. (1) A role in neurotransmission or neuromodulation appears evident from immunoreactive neurones in the medulla of the optic lobes, and from immunoreactive material in the central body and in descending interneurones in the suboesophageal ganglion that project to the neuropile of the thoracico-abdominal ganglion. (2) Leu-callatostatin neurones directly innervate muscles of the hindgut and the heart. Immunoreactive fibres from neurones of the abdominal ganglion pass by way of the median abdominal nerve to ramify extensively over several areas of the hindgut. Physiological experiments with synthetic peptides show that the Leu-callatostatins are potent inhibitors of peristaltic movements of the ileum. Leu-callatostatin 3 is active at 10-16 to 10-13 M. This form or regulatory control over gut motility appears to be highly specific since the patterns of contraction in other regions are unaffected by these peptides. (3) Evidence that the Leu-callatostatins act as neurohormones comes from the presence of varicosities in axons passing through the corpus cardiacum (but not the corpus allatum) and also from material in extraganglionic neurosecretory cells in the thorax. Fibres from these peripheral neurones are especially prominent over the large nerve bundles supplying the legs. There are also a considerable number of Leu-callatostatin-immunoreactive endocrine cells in a specific region of the midgut. The conclusion from this study is that although conservation of the structure of the allatostatin-type of peptides is evident through a long period of evolution it cannot be assumed that all of their functions have also been conserved. Several different types of functions for the Leu-callatostatins of the blowfly are proposed in this study, but there is no evidence to suggest a role in the regulation of juvenile hormone synthesis and release.  相似文献   

13.
Summary Gastrin/cholecystokinin (gastrin/CCK)-like immunoreactivity has been detected in the brain, suboesophageal ganglion and corpora cardiaca of the larva of Aeschna cyanea by radioimmunoassay and immunohistochemistry, by use of two antisera raised against the sulfated (CCK-8S) and the unsulfated form (CCK-8NS) of the carboxyl terminal octapeptide. Numerous immunoreactive neurons were demonstrated in the protocerebrum (exclusive of optic lobes) and suboesophageal ganglion where 20 and 15 symmetrical clusters of reactive cells, respectively, were observed. Immunoreactive cells also occurred in the tritocerebrum, the optic lobes and the frontal ganglion. In the corpora cardiaca, gastrin/CCK-like material was found both within intrinsic cells and axon terminals. RIA measurements support the immunohistochemical results in so far as large amounts of gastrin/CCK-like material were detected in the brain, corpora cardiaca and suboesophageal ganglion complex. Both boiling water-acetic acid- and methanol-extraction procedures were performed. Comparisons of the results lead to the conclusion that a large part of the gastrin/CCK-like material occurs as small molecules. Immunohistochemical procedures performed on material fixed in a solution of picric acid-paraformaldehyde demonstrated differences in the immunoreactivity of the tested antisera. First, the immunohistochemical reaction was always more pronounced when the CCK-8NS antiserum was used instead of the CCK-8S antiserum, which may be interpreted by a lower affinity of the latter. In the second place, some neurons strongly stained by the CCK-8NS antiserum were only very faintly if at all stained by the CCK-8S antiserum, which may mean that different peptides or at least distinct forms of the same precursor are detected.  相似文献   

14.
To enable strong attachment forces between pad and substrata, a high proximity between contacting surfaces is required. One of the mechanisms, which can provide an intimate contact of solids, is a high flexibility of both materials. It has been previously presumed that setae of hairy attachment pads of insects are composed of flexible cuticle, and are able to replicate the surface profile. The aim of this work was to visualise the contact behaviour of the setae by freezing-substitution technique to understand setal mechanics while adhering to a smooth surface. This approach revealed considerable differences in the area of the setal tips between contacting and non-contacting pulvilli. Based on the assumption that setae behave like a spring pushed by the tip, a spring constant of 1.31 N m(-1) was calculated from direct measurements of single setae by atomic force microscopy. In order to explain the relationship between the behaviour of the attachment setae at a microscale and leg movements, high-speed video recordings were made of walking flies. This data show that some proximal movement of the leg is present during contact formation with the substrate.  相似文献   

15.
S-Antigen (arrestin)-immunoreaction can be considered as a marker for retinal and extraretinal photoreceptors in both vertebrate and invertebrate species. The present immunocytochemical study with the blowfly Calliphora vicina revealed S-antigen immunoreaction in retinal photoreceptors and various groups of neurons bilaterally distributed in the optic lobes and in the proto-, deuto- and tritocerebrum. S-Antigen-immunoreactive processes and terminal formations were found in the lower division of the central body complex and in the neuropil of the mushroom body. Also neuropil regions of the optic lobe, the lamina, medulla and lobula displayed S-antigen-immunoreactive fibers which were arranged in different patterns. These immunocytochemical data suggest that extraocular photoreceptors may be located in various parts of the blowfly brain. They provide a structural basis for further experiments which are needed to identify definitely these elements as extraretinal photoreceptors.  相似文献   

16.
Summary Immunocytochemical staining has shown that the median neurosecretory cells (MNC) of the brain of the blowfly, Calliphora vomitoria, contain an insulin-like material which cross reacts with antibodies to bovine insulin. There are 24–26 paraldehyde fuchsin-positive MNC of which only 6–8 show the specific insulin-like immunoreactivity.Dr. M.C. Thorndyke, Department of Zoology, Bedford College, London University, kindly provided us with fluorescence facilities, and we are also grateful to him for helpful discussions on the immunofluorescence procedure  相似文献   

17.
Summary The distribution of a neuropeptide, previously shown to have the same or a very similar amino acid composition as vertebrate pancreatic polypeptide (PP), has been studied in the nervous system and gut of the blowfly, Calliphora vomitoria. Neurones immunoreactive to a bovine PP antiserum occur in the thoracic and abdominal ganglionic components of the central nervous system, in addition to the brain and suboesophageal ganglion. Pancreatic polypeptide appears to be relayed from its cells of origin to a neurohaemal organ in the dorsal sheath of the thoracic ganglion. PP immunoreactivity is also found in cells of the hypocerebral ganglion of the stomatogastric nervous system and in associated nerve fibres. The mid-gut contains PP-positive material in flask-shaped cells of its epithelial lining.  相似文献   

18.
Summary Immunohistochemistry with a minoxidil antibody suggested that minoxidil-immunoreactivity is associated with the root sheaths, laterally orientated differentiating matrix cells, and dividing epithelial cells of cultured vibrissa follicles of pigmented and albino neonatal mice. The dermal papilla and connective tissue sheath were devoid of minoxidil-immunoreactivity. To verify that minoxodil-immunoreactivity in the follicles was specific, immunostaining was conducted with dissected whisker pads, formalin-fixed dead follicles, and sections of spleen, liver and kidney (non-haired organs) cultured with minoxidil. Microscopic examination revealed minoxidil-immunoreactivity in all of these tissues. Follicles and whisker pads cultured with minoxidil, then washed for one h in media were devoid of minoxidil-immunoreactivity. These data suggest that minoxidil-immunoreactivity in cultured vibrissa follicles is probably non-specific. Sections of skin from C3H and CF1 mice which were topically dosed with minoxidil (in vivo) phy demonstrated that tritiated minoxidil was bound in vivo and in vitro only to melanin granules in pigmented follicles of rodent and human tissue. This is probably non-specific binding since melanin is known to accumulate several chemically and pharmacologically unrelated drugs. It is reasonable to conclude that, under the conditions of these experiments, minoxidil is not specifically localized in any cells of whisker, pelage or, scalp follicles.  相似文献   

19.
《Journal of Asia》2022,25(4):101984
Analysis of a possible delay between a person’s death and insect colonization plays a crucial role in forensic entomology and could be affected by numerous factors. Di- (2-ethylhexyl) phthalate (DEHP) is an endocrine disruptor with the ability to target various organs, intervene with their normal function and cause harmful impact on organisms. The current paper points out the effects of exposure to DEHP and/or its metabolites on the larval stages of Calliphora vicina. We observed significantly lower larval length of the second instars (p = 0.04) and width of the third instars (p = 0.04) exposed directly by parent DEHP. Length of the first instars on the board of significance (p = 0.057) was also recorded. We found discrepancy in development, but development rate and larval weight did not significantly differ from the control group. In the experiment focusing on the effect of DEHP metabolites throughout mice cadavers exposed to this diester during life, we detected a statistically significantly increased larval weight of the post-feeding third instars in the experimental group (p = 0.04). Hypothetically, our preliminary results indicate a disruptive effect of DEHP and/or its metabolites on the metric parameters of larvae of the forensically important Calliphora vicina species, but further studies are needed.  相似文献   

20.
Summary The individual rhabdomeres of the outer retinular cells (R1–6) in the tipulid fly, Ptilogyna, twist about their long axes. Proximally, the rhabdoms become partitioned off by processes from the retinular cells, so that the basal region of each rhabdomere is enclosed in a pocket formed by its own cell (Fig. 2). This organisation of the rhabdom enables each rhabdomere to twist while supported within its own retinular cell, and while the cell itself maintains its orientation with respect to the entire ommatidium. Theory predicts that the rhabdomeral twisting should significantly reduce the polarisation sensitivity of R1–6, but have little effect on the efficiency with which unpolarised light is absorbed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号