首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Observations in the Cape Province, South Africa, showed that Disa ferruginea (Orchidaceae) is dependent on a single butterfly species— Meneris tulbaghia (Nymphalidae: Satyrinae)—for pollination. The flowers of D. ferruginea contain no food reward and, instead, appear to secure pollinator visits by imitating flowers which are nectar sources for the butterfly. A red-flowered form of D. ferruginea appears to mimic the red nectar-producing flowers of Tritoniopsis triticea (Iridaceae) in the south-western Cape, while an orange-flowered form of D. ferruginea appears to mimic the orange nectar-producing flowers of Kniphofia uvaria (Asphodelaceae) in the Langeberg Mountains. Reflectance spectra of the orchid's flowers closely match those of its putative models. Analysis of foraging movements of the butterfly in a mixed stand of D. ferruginea and T. triticea indicated that it does not discriminate between the nectarless orchid and the nectar-producing model. Populations of D. ferruginea which are sympatric with T. triticea have relatively high levels of pollination and fruit production, compared with populations where the orchid grows alone. Although other studies have reported relatively low fecundity in deceptive orchids, pollination and fruiting success in D. ferruginea compares favourably with a nectar-producing congener, Disa uniflora , which is also pollinated solely by M. tulbaghia.  相似文献   

2.
Further advances in orchid mycorrhizal research   总被引:4,自引:0,他引:4  
Dearnaley JD 《Mycorrhiza》2007,17(6):475-486
Orchid mycorrhizas are mutualistic interactions between fungi and members of the Orchidaceae, the world’s largest plant family. The majority of the world’s orchids are photosynthetic, a small number of species are myco-heterotrophic throughout their lifetime, and recent research indicates a third mode (mixotrophy) whereby green orchids supplement their photosynthetically fixed carbon with carbon derived from their mycorrhizal fungus. Molecular identification studies of orchid-associated fungi indicate a wide range of fungi might be orchid mycobionts, show common fungal taxa across the globe and support the view that some orchids have specific fungal interactions. Confirmation of mycorrhizal status requires isolation of the fungi and restoration of functional mycorrhizas. New methods may now be used to store orchid-associated fungi and store and germinate seed, leading to more efficient culture of orchid species. However, many orchid mycorrhizas must be synthesised before conservation of these associations can be attempted in the field. Further gene expression studies of orchid mycorrhizas are needed to better understand the establishment and maintenance of the interaction. These data will add to efforts to conserve this diverse and valuable association.  相似文献   

3.
All orchids and pyroloids are mycoheterotrophic at least in the early stage. Many species are predisposed to mycoheterotrophic nutrition even in the adult  相似文献   

4.
5.
We investigated the physiological ecology of the Asian non-photosynthetic orchid Gastrodia confusa. We revealed its mycorrhizal partners by using molecular identification and identified its ultimate nutritional source by analysing carbon and nitrogen natural stable isotope abundances. Molecular identification using internal transcribed spacer and large subunit nrDNA sequences showed that G. confusa associates with several species of litter- and wood-decomposer Mycena fungi. The carbon and nitrogen isotope signatures of G. confusa were analysed together with photosynthetic plant reference samples and samples of the ectomycorrhizal epiparasite Monotropa uniflora. We found that G. confusa was highly enriched in 13C but not greatly in 15N, while M. uniflora was highly enriched in both 13C and 15N. The 13C and 15N signatures of G. confusa were the closest to those of the fruit bodies of saprotrophic fungi. Our results demonstrate for the first time using molecular and mass-spectrometric approaches that myco-heterotrophic plants gain carbon through parasitism of wood or litter decaying fungi. Furthermore, we demonstrate that, several otherwise free-living non-mycorrhizal, Mycena can be mycorrhizal partners of orchids.  相似文献   

6.
兰科植物菌根真菌研究新见解   总被引:3,自引:0,他引:3  
兰科(Orchidaceae)在地球生命系统演化中占有十分重要的地位,几乎全部兰科植物均处于不同程度的濒危状态,研究兰科菌根真菌对于保护珍稀濒危兰科植物具有重要意义.该文在对菌根真菌相关的概念及研究方法进行综述的基础上,对兰科菌根真菌的主要类群、特异性及其与兰科植物稀有性之间的关系,以及兰科菌根真菌与兰科植物之间的营养...  相似文献   

7.
Preference,specificity and cheating in the arbuscular mycorrhizal symbiosis   总被引:1,自引:0,他引:1  
Arbuscular mycorrhizal symbioses are mutualistic interactions between fungi and most plants. There is considerable interest in this symbiosis because of the strong nutritional benefits conferred to plants and its influence on plant diversity. Until recently, the symbiosis was assumed to be unspecific. However, two studies have now revealed that although it can be largely unspecific with the fungal community composition changing seasonally, in certain ecosystems it can also be highly specific and might potentially allow plants to cheat the arbuscular mycorrhizal network that connects plants below ground.  相似文献   

8.
Abstract. 1. The gall midge, Asphondylia borrichiae , attacks the terminals of three plants in the aster family: Borrichia frutescens , Iva frutescens , and I. imbricata .
2. In the field, Borrichia suffers the highest rate of galling and I. imbricata the lowest. Common garden experiments also revealed highly significant differences in the attack rates of the three host species by Asphondylia . However, these differences depended on the source of the attacking midge population.
3. Midges collected from Borrichia and I. frutescens attacked the host in which they developed almost exclusively, whereas those from I. imbricata attacked both Iva spp.
4. Each Asphondylia larva develops in its own chamber within a gall. Borrichia galls were 2.5–3.5-fold less crowded than those from I. imbricata and I. frutescens , respectively. Consequently, midges that developed in Borrichia were significantly larger and eclosed with 30–40% more eggs than those that developed in I. imbricata and I. frutescens , respectively.
5. Although performance of Asphondylia larvae was lowest on the two Iva spp., especially I. frutescens , these hosts may provide an escape from natural enemies as a trade-off for reduced offspring performance.
6. Differences in host-plant species phenology may reduce gene flow among host-associated populations of Asphondylia , thereby favouring the formation of races at the level of plant genus.  相似文献   

9.
Background and AimsMycorrhizal fungi are a critical component of the ecological niche of most plants and can potentially constrain their geographical range. Unlike other types of mycorrhizal fungi, the distributions of orchid mycorrhizal fungi (OMF) at large spatial scales are not well understood. Here, we investigate the distribution and diversity of Ceratobasidium OMF in orchids and soils across the Australian continent.MethodsWe sampled 217 Ceratobasidium isolates from 111 orchid species across southern Australia and combined these with 311 Ceratobasidium sequences from GenBank. To estimate the taxonomic diversity of Ceratobasidium associating with orchids, phylogenetic analysis of the ITS sequence locus was undertaken. Sequence data from the continent-wide Australian Microbiome Initiative were used to determine the geographical range of operational taxonomic units (OTUs) detected in orchids, with the distribution and climatic correlates of the two most frequently detected OTUs modelled using MaxEnt.Key ResultsWe identified 23 Ceratobasidium OTUs associating with Australian orchids, primarily from the orchid genera Pterostylis, Prasophyllum, Rhizanthella and Sarcochilus. OTUs isolated from orchids were closely related to, but distinct from, known pathogenic fungi. Data from soils and orchids revealed that ten of these OTUs occur on both east and west sides of the continent, while 13 OTUs were recorded at three locations or fewer. MaxEnt models suggested that the distributions of two widespread OTUs are correlated with temperature and soil moisture of the wettest quarter and far exceeded the distributions of their host orchid species.ConclusionsCeratobasidium OMF with cross-continental distributions are common in Australian soils and frequently have geographical ranges that exceed that of their host orchid species, suggesting these fungi are not limiting the distributions of their host orchids at large spatial scales. Most OTUs were distributed within southern Australia, although several OTUs had distributions extending into central and northern parts of the continent, illustrating their tolerance of an extraordinarily wide range of environmental conditions.  相似文献   

10.
Evidence is accumulating for specialized yet evolutionarily dynamic associations between orchids and their mycorrhizal fungi. However, the frequency of tight mycorrhizal specificity and the phylogenetic scale of changes in specificity within the Orchidaceae are presently unknown. We used microscopic observations and PCR-based methods to address these questions in three taxa of nonphotosynthetic orchids within the Hexalectris spicata complex. Fungal ITS RFLP analysis and sequences of the ITS and nuclear LSU ribosomal gene fragments allowed us to identify the fungi colonizing 25 individuals and 50 roots. Thanatephorus ochraceus (Ceratobasidiaceae) was an occasional colonizer of mycorrhizal roots and nonmycorrhizal rhizomes. Members of the Sebacinaceae were the primary mycorrhizal fungi in every Hexalectris root and were phylogenetically intermixed with ectomycorrhizal taxa. These associates fell into six ITS RFLP types labeled B through G. Types B, C, D, and G were found in samples of H. spicata var. spicata, while only type E was found in H. spicata var. arizonica and only type F was found in H. revoluta. These results provide preliminary evidence for divergence in mycorrhizal specificity between these two closely related orchid taxa. We hypothesize that mycorrhizal interactions have contributed to the evolutionary diversification of the Orchidaceae.  相似文献   

11.
Terrestrial orchid germination, growth and development are closely linked to the establishment and maintenance of a relationship with a mycorrhizal fungus. Mycorrhizal dependency and specificity varies considerably between orchid taxa but the degree to which this underpins rarity in orchids is unknown. In the context of examining orchid rarity, large scale in vitro and in situ germination trials complemented by DNA sequencing were used to investigate ecological specialization in the mycorrhizal interaction of the rare terrestrial orchid Caladenia huegelii. Common and widespread sympatric orchid congeners were used for comparative purposes. Germination trials revealed an absolute requirement for mycorrhisation with compatibility barriers to germination limiting C. huegelii to a highly specific and range limited, efficacious mycorrhizal fungus. DNA sequencing confirmed fidelity between orchid and fungus across the distribution range of C. huegelii and at key life history stages within its life cycle. It was also revealed that common congeners could swap or share fungal partners including the fungus associated with the rare orchid but not vice versa. Data from this study provides evidence for orchid rarity as a cause and consequence of high mycorrhizal specialization. This interaction must be taken into account in efforts to mitigate the significant extinction risk for this species from anthropogenically induced habitat change and illustrates the importance of understanding fungal specificity in orchid ecology and conservation.  相似文献   

12.
Tropical orchids constitute the greater part of orchid diversity, but little is known about their obligate mycorrhizal relationships. The specificity of these interactions and associated fungal distributions could influence orchid distributions and diversity. We investigated the mycorrhizal specificity of the tropical epiphytic orchid Ionopsis utricularioides across an extensive geographical range. DNA ITS sequence variation was surveyed in both plants and mycorrhizal fungi. Phylogeographic relationships were estimated for the mycorrhizal fungi. Orchid functional outcomes were determined through in vitro seed germination and seedling growth with a broad phylogenetic representation of fungi. Most fungal isolates derived from one clade of Ceratobasidium (anamorphs assignable to Ceratorhiza), with 78% within a narrower phylogenetic group, clade B. No correlation was found between the distributions of orchid and fungal genotypes. All fungal isolates significantly enhanced seed germination, while fungi in clade B significantly enhanced seedling growth. These results show that I. utricularioides associates with a phylogenetically narrow, effective fungal clade over a broad distribution. This preference for a widespread mycorrhizae may partly explain the ample distribution and abundance of I. utricularioides and contrasts with local mycorrhizal diversification seen in some nonphotosynthetic orchids. Enhanced orchid function with a particular fungal subclade suggests mycorrhizal specificity can increase orchid fitness.  相似文献   

13.
14.
15.
Mycorrhizal association is a common characteristic in a majority of land plants, and the survival and distribution of a species can depend on the distribution of suitable fungi in its habitat. Orchidaceae is one of the most species‐rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and some also for subsequent growth and survival. Given this obligate dependence, at least in the early growth stages, elucidating the patterns of orchid–mycorrhizal relationships is critical to orchid biology, ecology and conservation. To assess whether rarity of an orchid is determined by its specificity towards its fungal hosts, we studied the spatial and temporal variability in the host fungi associated with one of the rarest North American terrestrial orchids, Piperia yadonii. The fungal internal transcribed spacer region was amplified and sequenced by sampling roots from eight populations of P. yadonii distributed across two habitats, Pinus radiata forest and maritime chaparral, in California. Across populations and sampling years, 26 operational taxonomic units representing three fungal families, the Ceratobasidiaceae, Sebacinaceae and Tulasnellaceae, were identified. Fungi belonging to the Sebacinaceae were documented in orchid roots only at P. radiata forest sites, while those from the Ceratobasidiaceae and Tulasnellaceae occurred in both habitats. Our results indicate that orchid rarity can be unrelated to the breadth of mycorrhizal associations. Our data also show that the dominance of various fungal families in mycorrhizal plants can be influenced by habitat preferences of mycorrhizal partners.  相似文献   

16.
17.
Growth and enzymatic activities of extraradical mycelia (ERM) of native mycorrhizal symbionts associated with three orchid species, Dactylorhiza fuchsii, D. majalis and Platanthera bifolia, were studied. ERM extracted from the mycorrhizosphere of these species showed features typical for fungi that form orchid mycorrhiza. In the first pot experiment, three different treatments were applied on tubers of D. fuchsii transplanted from a natural site: control (no specific treatment), reinoculated (surface-sterilized tubers reinoculated with mycorrhizal fungi-colonised roots), and benomyl (nonsterilized tubers treated with fungicide). However, no significant differences in ERM growth and intensity of root mycorrhizal colonisation at harvest were observed among these treatments. ERM associated with reinoculated D. fuchsii plants showed significantly higher alkaline phosphatase (ALP) enzymatic activity at week 36 than at week 24, but no differences were observed for NADH diaphorase activity. Benomyl application significantly reduced ALP activity in comparison with reinoculated plants at week 36. In the second experiment, plants of all three species were either untreated (control), or repeatedly treated with benomyl. Similarly to the results of the first experiment, benomyl application did not reduce the ERM growth of mycorrhizal symbionts associated with D. majalis and D. fuchsii. The low ERM growth associated with benomyl-treated P. bifolia was probably caused by poor root system development in this treatment. Significantly higher mycorrhizal colonisation was found for D. fuchsii compared to P. bifolia in control treatments at the end of cultivation. The ERM of native symbionts of the three orchid species studied seemed to have a different growth pattern over time and responded differently to fungicide application.  相似文献   

18.
干旱胁迫是在多种生态系统中影响植物生存、发育及产量的最主要的非生物因素之一。菌根共生已被证明可以提高植物对干旱的耐受性。兰科植物对菌根真菌有非常高的依赖性,但是有关兰科菌根真菌是否可以提高宿主植物的耐旱性以及能提高到什么程度还少有报道。在本研究中,我们检测了一株分离自附生型兰科植物禾叶贝母兰Coelogyne viscosa的胶膜菌属真菌Tullasnella sp. hy-111对宿主植物幼苗生长及耐旱性的影响,并从转录组水平检测了该菌根真菌对禾叶贝母兰幼苗基因表达的影响。结果显示,接种hy-111不仅能显著提高幼苗的生物量、与耐旱相关的酶活性以及渗透调节物质的富集,而且还能显著诱导植物抗性途径相关基因的上调表达。本研究表明菌根真菌能改善生长于胁迫的附生生境中的兰科植物对于干旱的耐受性,并可能在兰科植物的生态适应中起到重要作用。  相似文献   

19.
研究了不同的消毒时间和培养基类型对兰花菌根真菌分离效果的影响,以期获得兰花菌根真菌的最佳分离方法.采用了次氯酸钠和酒精作为消毒试剂,发现依次浸没于75 %酒精60 s、2 %次氯酸钠60 和75 %酒精30 s的组合消毒条件下分离效果最佳;选择了3种培养基(PDA、CZA和MEA),结果表明MEA培养基的分离效果最为稳定.通过组织分离法分离兰花菌根真菌,筛选得到最佳的分离培养条件,旨在为兰花菌根真菌的多样性以及共生效应研究提供研究基础.  相似文献   

20.
Summary

Population dynamics of Goodyera repens Br. were investigated on permanent quadrats over a 12 month period in conjuction with a study of mycorrhizal infection. The production and death of individuals were recorded at monthly intervals. At all sites production of new individuals was greatest during summer and lowest in winter; deaths were not so markedly seasonal. Recruitment was greater than mortality and the population size increased at all sites. The turnover time of the populations was related to their size and was greater in large populations. The level of mycorrhizal infection in the roots remained constant throughout the year but in the main rhizomes infection was greater in winter when their rate of extension was least. The pattern of infection suggests that internal mycelial spread takes place throughout the year together with some re-infection from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号