共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Identification of RpoS (sigma(S))-regulated genes in Salmonella enterica serovar typhimurium 下载免费PDF全文
Ibanez-Ruiz M Robbe-Saule V Hermant D Labrude S Norel F 《Journal of bacteriology》2000,182(20):5749-5756
The rpoS gene encodes the alternative sigma factor sigma(S) (RpoS) and is required for survival of bacteria under starvation and stress conditions. It is also essential for Salmonella virulence in mice. Most work on the RpoS regulon has been in the closely related enterobacterial species Escherichia coli. To characterize the RpoS regulon in Salmonella, we isolated 38 unique RpoS-activated lacZ gene fusions from a bank of Salmonella enterica serovar Typhimurium mutants harboring random Tn5B21 mutations. Dependence on RpoS varied from 3-fold to over 95-fold, and all gene fusions isolated were regulated by growth phase. The identities of 21 RpoS-dependent fusions were determined by DNA sequence analysis. Seven of the fusions mapped to DNA regions in Salmonella serovar Typhimurium that do not match any known E. coli sequence, suggesting that the composition of the RpoS regulon differs markedly in the two species. The other 14 fusions mapped to 13 DNA regions very similar to E. coli sequences. None of the insertion mutations in DNA regions common to both species appeared to affect Salmonella virulence in BALB/c mice. Of these, only three (otsA, katE, and poxB) are located in known members of the RpoS regulon. Ten insertions mapped in nine open reading frames of unknown function (yciF, yehY, yhjY, yncC, yjgB, yahO, ygaU, ycgB, and yeaG) appear to be novel members of the RpoS regulon. One insertion, that in mutant C52::H87, was in the noncoding region upstream from ogt, encoding a O(6)-methylguanine DNA methyltransferase involved in repairing alkylation damage in DNA. The ogt coding sequence is very similar to the E. coli homolog, but the ogt 5' flanking regions were found to be markedly different in the two species, suggesting genetic rearrangements. Using primer extension assays, a specific ogt mRNA start site was detected in RNAs of the Salmonella serovar Typhimurium wild-type strains C52 and SL1344 but not in RNAs of the mutant strains C52K (rpoS), SL1344K (rpoS), and C52::H87. In mutant C52::H87, Tn5B21 is inserted at the ogt mRNA start site, with lacZ presumably transcribed from the identified RpoS-regulated promoter. These results indicate that ogt gene expression in Salmonella is regulated by RpoS in stationary phase of growth in rich medium, a finding that suggests a novel role for RpoS in DNA repair functions. 相似文献
3.
Influence of DNA supercoiling on the loss of culturability of Escherichia coli cells incubated in seawater 总被引:1,自引:0,他引:1
The relationship between the loss of culturability of Escherichia coli cells in seawater and the DNA supercoiling level of a reporter plasmid (pUC8) have been studied under different experimental conditions. Transfer to seawater of cells grown at low osmolarity decreased their ability to grow without apparent modification of the plasmid supercoiling. We found that E. coli cells could be protected against seawater-induced loss of culturability by increasing their DNA-negative supercoiling in response to environmental factors: either a growth at high osmolarity before the transfer to seawater, or addition of organic matter (50-mg/l peptone) in seawater. We further found conditions where a DNA-induced relaxation was accompanied by an increase in seawater sensitivity. Indeed, inactivation of either one of the subunits A and B of DNA gyrase, which leads to important DNA relaxation, was accompanied in both cases by an increased loss of culturability of conditional mutants after transfer to seawater which could not be explained uniquely by the increase in the temperature required to inactivate the gyrase. Similarly, a strain harbouring a mutation in topoisomerase I, compensated by another mutation in subunit B of the gyrase, was more sensitive to seawater than the isogenic wild-type cell and this greater sensitivity was correlated to a relaxation of plasmid DNA. Again, in these different cases, a previous growth at high osmolarity protected against this seawater sensitivity. We thus propose that the ability of E. coli cells to survive in seawater and maintain their ability to grow on culture media could be linked, at least in part, to the topological state of their DNA.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
5.
The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. 总被引:21,自引:30,他引:21 下载免费PDF全文
KatF is required for the expression of some 32 carbon starvation proteins in Escherichia coli including 6 previously identified as Pex. Mutants with the katF gene survive carbon and nitrogen starvation poorly. Many of the KatF-regulated starvation proteins are common to those induced by other stresses, and the mutant failed to develop starvation-mediated cross protection to osmotic, oxidative, and heat stresses. Furthermore, thermal resistance was not induced in the mutant by heat preadaptation, and it exhibited an altered pattern of protein synthesis at elevated temperature. Thus, KatF is a major switch that controls the starvation-mediated resistant state in E. coli. 相似文献
6.
Periplasmic space in Salmonella typhimurium and Escherichia coli. 总被引:74,自引:0,他引:74
The volume of the periplasmic space in Escherichia coli and Salmonella typhimurium cells was measured. This space, in cells grown and collected under conditions routinely used in work with these bacteria, was shown to comprise from 20 to 40% of the total cell volume. Further studies were conducted to determine the osmotic relationships between the periplasm, the external milieu, and the cytoplasm. Results showed that there is a Donnan equilibrium between the periplasm and the extracellular fluid, and that the periplasm and cytoplasm are isoosmotic. In minimal salts medium, the osmotic strength of the cell interior was estimated to be approximately 300 mosM, with a net pressure of approximately 3.5 atm being applied to the cell wall. A corollary of these findings was that an electrical potential exists across the outer membrane. This potential was measured by determining the distributions of Na+ and Cl- between the periplasm and the cell exterior. The potential varied with the ionic strength of the medium; for cells in minimal salts medium it was approximately 30 mV, negative inside. 相似文献
7.
8.
Mycobacterium tuberculosis, the causative agent of tuberculosis, may remain dormant within its host for many years. The nature of this dormant or latent state is not known, but it may be a specialized form of the stationary growth phase. In Escherichia coli, KatF (or RpoS) is the major stationary phase sigma factor regulating an array of genes expressed in this phase of growth. A potential M. tuberculosis katF homologue was cloned using a fragment of the E. coli katF gene as a probe. DNA sequence analysis of a resultant clone showed 100% identity to a fragment of DNA encoding the M. tuberculosis mysA and mysB genes. Overexpression of mysB in M. bovis BCG resulted in an increase in katG mRNA and catalase and peroxidase activity, and an increase in sensitivity of the cells to isoniazid. An increase in katG promoter activity from a reporter vector was demonstrated when mysB was overexpressed from the same plasmid, indicating a direct relationship between MysB and katG expression. 相似文献
9.
Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease. 总被引:16,自引:5,他引:16 下载免费PDF全文
In Escherichia coli, starvation (stationary-phase)-mediated differentiation involves 50 or more genes and is triggered by an increase in cellular sigma s levels. Western immunoblot analysis showed that in mutants lacking the protease ClpP or its cognate ATPase-containing subunit ClpX, sigma s levels of exponential-phase cells increased to those of stationary-phase wild-type cells. Lack of other potential partners of ClpP, i.e., ClpA or ClpB, or of Lon protease had no effect. In ClpXP-proficient cells, the stability of sigma s increased markedly in stationary-phase compared with exponential-phase cells, but in ClpP-deficient cells, sigma s became virtually completely stable in both phases. There was no decrease in ClpXP levels in stationary-phase wild-type cells. Thus, sigma s probably becomes more resistant to this protease in stationary phase. The reported sigma s-stabilizing effect of the hns mutation also was not due to decreased protease levels. Studies with translational fusions containing different lengths of sigma s coding region suggest that amino acid residues 173 to 188 of this sigma factor may directly or indirectly serve as at least part of the target for ClpXP protease. 相似文献
10.
Conjugation and bacteriophage P1 transduction experiments in Escherichia coli showed that resistance to the antibacterial compound diazaborine is caused by an allelic form of the envM gene. The envM gene from Salmonella typhimurium was cloned and sequenced. It codes for a 27,765-dalton protein. The plasmids carrying this DNA complemented a conditionally lethal envM mutant of E. coli. Recombinant plasmids containing gene envM from a diazaborine-resistant S. typhimurium strain conferred the drug resistance phenotype to susceptible E. coli cells. A guanine-to-adenine exchange in the envM gene changing a Gly codon to a Ser codon was shown to be responsible for the resistance character. Upstream of envM a small gene coding for a 10,445-dalton protein was identified. Incubating a temperature-sensitive E. coli envM mutant at the nonpermissive temperature caused effects on the cells similar to those caused by treatment with diazaborine, i.e., inhibition of fatty acid, phospholipid, and lipopolysaccharide biosynthesis, induction of a 28,000-dalton inner membrane protein, and change in the ratio of the porins OmpC and OmpF. 相似文献
11.
12.
Oxidative stress responses in Escherichia coli and Salmonella typhimurium. 总被引:58,自引:1,他引:58 下载免费PDF全文
Oxidative stress is strongly implicated in a number of diseases, such as rheumatoid arthritis, inflammatory bowel disorders, and atherosclerosis, and its emerging as one of the most important causative agents of mutagenesis, tumorigenesis, and aging. Recent progress on the genetics and molecular biology of the cellular responses to oxidative stress, primarily in Escherichia coli and Salmonella typhimurium, is summarized. Bacteria respond to oxidative stress by invoking two distinct stress responses, the peroxide stimulon and the superoxide stimulon, depending on whether the stress is mediated by peroxides or the superoxide anion. The two stimulons each contain a set of more than 30 genes. The expression of a subset of genes in each stimulon is under the control of a positive regulatory element; these genes constitute the OxyR and SoxRS regulons. The schemes of regulation of the two regulons by their respective regulators are reviewed in detail, and the overlaps of these regulons with other stress responses such as the heat shock and SOS responses are discussed. The products of Oxy-R- and SoxRS-regulated genes, such as catalases and superoxide dismutases, are involved in the prevention of oxidative damage, whereas others, such as endonuclease IV, play a role in the repair of oxidative damage. The potential roles of these and other gene products in the defense against oxidative damage in DNA, proteins, and membranes are discussed in detail. A brief discussion of the similarities and differences between oxidative stress responses in bacteria and eukaryotic organisms concludes this review. 相似文献
13.
14.
15.
Studies of the expression of Escherichia coli fol alleles in Salmonella typhimurium indicated that fol regulatory functions are highly conserved between these bacterial species. 相似文献
16.
Gratuitous repression of avtA in Escherichia coli and Salmonella typhimurium. 总被引:2,自引:1,他引:1 下载免费PDF全文
avtA , which encodes transaminase C (alanine-valine transaminase), is repressed by excess-L-alanine or L-leucine, and also by limitation for any of a number of amino acids in Escherichia coli and Salmonella typhimurium. Amino acid limitation causes repression by promoting the accumulation of L-alanine or L-leucine or both. avtA is also repressed by L-alpha-aminobutyric acid and other nonprotein amino acids which are structurally similar to L-alanine. We hypothesize that L-alanine and L-alpha-aminobutyric acid, whose syntheses are catalyzed by transaminase C, are the true corepressors of avtA . Repression by structural analogs of the true corepressors is termed gratuitous repression. 相似文献
17.
Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. 总被引:5,自引:2,他引:5
The antibiotic albomycin is actively taken up by Escherichia coli via the transport system for the structurally similar iron complex ferrichrome. Albomycin is cleaved, and the antibiotically active moiety is released into the cytoplasm, whereas the iron carrier moiety appears in the medium. Besides transport-negative mutants, additional albomycin-resistant mutants were isolated. The mutations were mapped outside the transport genes close to the pyrD gene at 21 min. The mutants were devoid of peptidase N activity. The molecular weight, sensitivity to inhibitors, and cytoplasmic location of the enzyme hydrolyzing albomycin in vitro corresponded to the known properties of peptidase N. The aminoacyl thioribosyl pyrimidine moiety of albomycin apparently has to be cleaved off the iron chelate transport vehicle to inhibit growth. Peptidase N is the major hydrolyzing enzyme. In Salmonella typhimurium peptidase N and peptidase A were equally active in hydrolyzing and activating albomycin. 相似文献
18.
Influence on motility of Escherichia coli and Salmonella typhimurium by a naturally occurring conjugative plasmid. 下载免费PDF全文
In a collection of 45 R-plasmids, one was found to be associated with loss of motility of its Escherichia coli K-12 and Salmonella typhimurium host bacteria when tested in conventional motility agar. Genetic experiments, as well as analyses of deoxyribonucleic acid, showed that inhibition of motility was caused by a conjugative plasmid that was separate from the R-plasmid. This second plasmid, named pUM5, was fi- and mediated the same type of sex pilus (F-like) as the accompanying R-plasmid but lacked resistance determinants. Preliminary studies indicated that bacterial cells carrying the motility inhibition plasmid pUM5 were still equipped with flagella. The mechanism by which flagellar action is disturbed by the plasmid is presently not known. 相似文献
19.
20.
A M Lazdunski 《FEMS microbiology reviews》1989,5(3):265-276
A number of peptidases and proteases have been identified in Escherichia coli. Although their specific physiological roles are often not known, some of them have been shown to be involved in: the maturation of nascent polypeptide chains; the maturation of protein precursors; the signal peptide processing of exported proteins; the degradation of abnormal proteins; the use of small peptides as nutrients; the degradation of colicins; viral morphogenesis; the inactivation of some regulatory proteins for which a limited lifetime is a physiological necessity. Some of these enzymes act in concert to carry out specific functions. At present, twelve peptidases and seventeen proteases have been characterized. The specificity for only a few of them is known. The possible roles and the properties of these enzymes are discussed in this review. 相似文献