共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulin in rat adipose tissue acts to increase the phosphorylation about 2.5-fold of a low molecular weight protein in the cytosol designated phosphoprotein m. Isoproterenol had no effect on the phosphorylation of phosphoprotein m. Some of the properties of phosphoprotein m are: soluble in 1% trichloro acetic acid, heat-stable and has a molecular weight of 23,000 on polyacrylamide gels in the presence of sodium dodecyl sulfate. Phosphoserine and phosphothreonine are the phosphorylated amino acid residues of phosphoprotein m. The physical and chemical properties of phosphoprotein m are similar to those of previously described inhibitor and modulator proteins. 相似文献
2.
Calcium/phospholipid-dependent protein kinase activity (protein kinase C) was identified in rat diaphragm membrane and cytosol fractions by means of in vitro phosphorylation either of histones or of a specific 87 kDa protein substrate, combined with phosphopeptide-mapping techniques. Both insulin and tumor-promoting phorbol ester treatment of the diaphragm preparations led to increased protein kinase C activity in the membrane fractions. In contrast to the phorbol ester, however, insulin did not induce a concomitant decrease in cytosolic activity, indicating that translocation of the enzyme had not taken place. Thus, insulin appears to increase specifically membrane protein kinase C activity in rat skeletal muscle, possibly through a mechanism not identical to that induced by phorbol esters. 相似文献
3.
B Draznin J W Leitner K E Sussman N A Sherman 《Biochemical and biophysical research communications》1988,156(1):570-575
In the presence of 1 mM glucose, insulin (10 ng/ml) increases both catalytic and receptor-binding properties of adipocyte cytosolic protein kinase C (PKC). Preincubation of adipocytes with 10 mM glucose raises basal PKC catalytic activity and prevents further stimulation of this enzyme by insulin. The effect of hyperglycemia is likely to be mediated by direct conversion of glucose into diacylglycerol. Thus, an incorporation of 14C-glucose into diacylglycerol is enhanced 10-fold in the presence of 10 mM glucose. These observations indicate that, in normal adipocytes, both insulin and glucose activate PKC; hyperglycemia eliminates the ability of insulin to stimulate this enzyme, thereby interfering with insulin action. 相似文献
4.
A cyclic AMP--stimulated protein kinase in adipose tissue 总被引:13,自引:0,他引:13
5.
M Zyirek C Flood C Longcope 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1987,186(2):134-138
We measured the 5 alpha-reductase activity in isolated cell preparations of rat adipose tissue using the formation of [3H]dihydrotestosterone from [3H]testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5 alpha-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10(-8) M), when added to the medium, caused a 90% decrease in 5 alpha-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5 alpha-reductase activity in each tissue studied. 相似文献
6.
7.
8.
Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo 总被引:19,自引:0,他引:19
Saha AK Avilucea PR Ye JM Assifi MM Kraegen EW Ruderman NB 《Biochemical and biophysical research communications》2004,314(2):580-585
Thiazolidinediones have been shown to activate AMP-activated protein kinase activity in cultured cells. Whether they have a similar effect in vivo and if so whether it is physiologically relevant is not known. To assess these questions, we examined the effects of pioglitazone, administered orally to intact rats, on AMPK phosphorylation (AMPK-P) (a measure of its activation) and acetyl CoA carboxylase (ACC) activity and malonyl CoA concentration in rat liver and adipose tissue. In the first study, measurements were made in the Dahl-salt-sensitive rat (Dahl-S), a strain of Sprague-Dawley rat with endogenous hypertriglyceridemia and high levels of malonyl CoA that are restored to control values by pioglitazone. Treatment with pioglitazone (20mg/kg bw/day for 3 weeks) did not significantly increase either P-AMPK or P-ACC (which varies inversely with ACC activity) in control rats. However, in the Dahl-S rats values for AMPK-P and ACC-P were 50% lower than in control rats and were doubled by pioglitazone treatment. In a second study, the effects of two weeks treatment with pioglitazone (3mg/kg bw/day administered orally) were evaluated in Wistar rats. Under basal conditions (no manipulation of the animals), pioglitazone increased AMPK phosphorylation by twofold and decreased ACC activity and the concentration of malonyl CoA by 50% in liver. Following a euglycemic-hyperinsulinemic clamp (6h), 50% decreases in AMPK and ACC phosphorylation (indicating an increase in its activity) and comparable increases in malonyl CoA concentration were observed in liver and adipose tissue. In both tissues, pre-treatment with pioglitazone prevented these changes. Where studied (in Wistar rats under basal conditions) treatment with pioglitazone decreased the concentration of ATP by 1/3 and increased the concentration of ADP and AMP in liver. The results indicate that treatment with pioglitazone can increase AMPK activity in rat liver and adipose tissue in a variety of circumstances. They also suggest that this activation of AMPK may be mediated by a change in cellular energy state. Whether these effects of pioglitazone contribute to its insulin-sensitizing and other actions in vivo remains to be determined. 相似文献
9.
1. Evidence is presented that exposure of epididymal fat-pads from fed rats to insulin leads to a marked diminution in the Km for phosphoenolpyruvate of pyruvate kinase. Effects of insulin may be readily demonstrated in experiments both in vivo and in vitro and are not secondary to the activation by the hormone of glucose transport. No effect of insulin is apparent in tissues from 48 h-starved animals. 2. The mechanism of the effect of insulin on pyruvate kinase was not established. The observed changes in Km do not appear to be the result of alterations in the amounts of bound effectors such as fructose 1,6-bisphosphate and alanine. Rather, as the effect persists in incubated extracts, it appears that a change in the degree of phosphorylation or some other covalent modification of the enzyme may be involved. 相似文献
10.
Laviola L Perrini S Cignarelli A Giorgino F 《Archives of physiology and biochemistry》2006,112(2):82-88
Adipose tissue is a critical regulator of energy balance and substrate metabolism, and synthesizes several different substances with endocrine or paracrine functions, which regulate the overall energetic homeostasis. An excessive amount of adipose tissue has been associated with the development of type 2 diabetes, premature atherosclerosis, and cardiovascular disease. It is believed that the adverse metabolic impact of visceral fat relies on a relative resistance to the action of insulin in this depot compared to other adipose tissue depots. However, information on insulin signalling reactions in human fat is limited. In this paper, we review the major insulin signalling pathways in adipocytes and their relevance for metabolic regulation, and discuss recent data indicating different signalling properties of visceral fat as compared to other fat depots, which may explain the metabolic and hormonal specificity of this fat tissue depot in humans. 相似文献
11.
R S Bernstein 《Journal of lipid research》1979,20(7):848-856
Glucose utilization was studied in isolated fat cells prepared from rat adipose tissue which had been cultured for 18 hr in TC 199 medium. When 1% bovine serum albumin (BSA) was in the culture medium, basal rates of (14)CO(2) and [(14)C]triglyceride production from [1-(14)C]glucose were markedly depressed and there was no effect of insulin. With 4% BSA, basal (14)CO(2) production was the same as in cells prepared from fresh tissue and basal triglyceride production was greatly increased. Insulin effect on these cells was minimal. One-minute uptake of [(14)C]2-deoxyglucose was stimulated by 800-1000% in fresh cells and 300-500% in cells cultured with either 1% or 4% BSA. Oxidation of [U-(14)C]glucose showed a much smaller impairment in cultured cells than for [1-(14)C]glucose, suggesting that the pentose phosphate shunt was more severely impaired than glycolysis. Glyceride-glycerol production was increased in cultured cells relative to preculture (fresh) cells. There was no effect of insulin in the culture medium in any of these systems. Rates of free fatty acid and glycerol release were markedly increased in cultured cells, especially when insulin was present in the culture medium. The acute antilipolytic effect of insulin was retained, so that insulin in the test incubation decreased lipolysis by 40-80%. Nevertheless, cell-associated fatty acids were increased in cultured cells and FFA/albumin ratios in the medium often reached potentially toxic levels. The reduction in pentose phosphate shunt activity, lipogenesis, and insulin effect resembles other models of insulin insensitivity. The impaired metabolism is probably due to an intracellular defect. A possible toxic role of either intracellular or extracellular fatty acids cannot be excluded. This system should be a useful model in which to study the cellular mechanisms of insulin insensitivity in adipocytes.-Bernstein, R. S. Insulin insensitivity and altered glucose utilization in cultured rat adipose tissue. 相似文献
12.
13.
K V Kandror 《The Journal of biological chemistry》1999,274(36):25210-25217
Rat adipocytes were biotinylated with cell-impermeable reagents, sulfo-N-hydroxysuccinimide-biotin and sulfo-N-hydroxysuccinimide-S-S-biotin in the absence and presence of insulin. Biotinylated and nonbiotinylated populations of the insulin-like growth factor-II/mannose 6-phosphate receptor, the transferrin receptor, and insulin-responsive aminopeptidase were separated by adsorption to streptavidin-agarose to determine the percentage of the biotinylated protein molecules versus their total amount in different subcellular compartments. Results indicate that adipose cells possess at least two distinct cell surface recycling pathways for insulin-like growth factor-II/mannose 6-phosphate receptor (MPR) and transferrin receptor (TfR): one which is mediated by glucose transporter isoform 4(Glut4)-vesicles and another that bypasses this compartment. Under basal conditions, the first pathway is not active, and cell surface recycling of TfR and, to a lesser extent, MPR proceeds via the second pathway. Insulin dramatically stimulates recycling through the first pathway and has little effect on the second. Within the Glut4-containing compartment, insulin has profoundly different effects on intracellular trafficking of insulin-responsive aminopeptidase on one hand and MPR and TfR on the other. After insulin administration, insulin-responsive aminopeptidase is redistributed from Glut4-containing vesicles to the plasma membrane and stays there for at least 30 min with minimal detectable internalization and recycling, whereas MPR and TfR rapidly shuttle between Glut4 vesicles and the plasma membrane in such a way that after 30 min of insulin treatment, virtually every receptor molecule in this compartment completes at least one trafficking cycle to the cell surface. Thus, different recycling proteins, which compose Glut4-containing vesicles, are internalized into this compartment at their own distinctive rates. 相似文献
14.
Intracellular recording of white adipocytes was performed in an in vitro preparation. Resting potential, input resistance and membrane time constant averaged: -34 +/- 9 mV, 295 +/- 161 M omega, and 58 +/- 19 ms respectively (mean +/- SD, n = 32). Intracellular injection of positive and negative square current pulses elicited membrane voltage responses, characterized by a rectification of the voltage change evoked by positive pulses, and a slow return to baseline at the offset of hyperpolarizing pulses. The amplitude and duration of the slow return to resting potential was dependent on membrane potential, pulse duration, and extracellular K+ concentration. This response was depressed when external Ca2+ was replaced by Co2+, and by external application of 4-aminopyridine. These results indicate that white adipocytes can generate membrane voltage responses which may mostly be a consequence of the activity of ionic channels. The properties of the slow return to baseline suggest that it may be due to a transient K+ current. 相似文献
15.
Insulin acutely increases phospholipids in the phosphatidate-inositide cycle in rat adipose tissue 总被引:10,自引:0,他引:10
Administration of insulin in vivo provoked rapid (near maximal in 30 min) increases (65-90%) in the concentrations of phosphatidic acid, phosphatidylinositol, and polyphosphoinositides in rat adipose tissue. Insulin also increased phosphatidylinositol levels in adipocytes incubated in vitro. Dose-response relationships suggested that these effects of insulin were physiologically relevant. The enrichment of membranes with acidic phospholipids in the phosphatidate-inositide cycle may play a role in the action of insulin in adipocytes. 相似文献
16.
R Ballotti Y Le Marchand-Brustel S Gammeltoft E Van Obberghen 《Reproduction, nutrition, development》1989,29(6):653-661
The first step in insulin action consists in binding of the hormone to specific cell surface receptors. This receptor displays two functional domains: an extracellular alpha-subunit containing the majority or the totality of the hormone binding site and an intracellular beta-subunit possessing insulin-stimulated tyrosine kinase activity. A general consensus has been reached in favour of the idea that this receptor enzymic function is essential for generation of the metabolic and growth-promoting effects of insulin. Concerning the mechanism of transmembrane signalling, we like to think that interaction of insulin with the receptor alpha-subunit triggers a conformational change, which is propagated to the beta-subunit and activates it. The active receptor kinase leads then to the phosphorylation of cellular protein substrates, which are likely to belong to two broad categories, those generating metabolic effects of insulin and those resulting in growth-promoting effects. The phosphorylated and active substrates then generate the final effects of insulin. 相似文献
17.
Biljana N. Bursać Ana D. Djordjevic Ana D. Vasiljević Danijela D. Vojnović Milutinović Nataša A. Veličković Nataša M. Nestorović Gordana M. Matić 《The Journal of nutritional biochemistry》2013,24(6):1166-1172
The rise in consumption of refined sugars high in fructose appears to be an important factor for the development of obesity and metabolic syndrome. Fructose has been shown to be involved in genesis and progression of the syndrome through deregulation of metabolic pathways in adipose tissue. There is evidence that enhanced glucocorticoid regeneration within adipose tissue, mediated by the enzyme 11beta-hydroxysteroid dehydrogenase Type 1 (11βHSD1), may contribute to adiposity and metabolic disease. 11βHSD1 reductase activity is dependent on NADPH, a cofactor generated by hexose-6-phosphate dehydrogenase (H6PDH). We hypothesized that harmful effects of long-term high fructose consumption could be mediated by alterations in prereceptor glucocorticoid metabolism and glucocorticoid signaling in the adipose tissue of male Wistar rats. We analyzed the effects of 9-week drinking of 10% fructose solution on dyslipidemia, adipose tissue histology and both plasma and tissue corticosterone level. Prereceptor metabolism of glucocorticoids was characterized by determining 11βHSD1 and H6PDH mRNA and protein levels. Glucocorticoid signaling was examined at the level of glucocorticoid receptor (GR) expression and compartmental redistribution, as well as at the level of expression of its target genes (GR, phosphoenolpyruvate carboxyl kinase and hormone-sensitive lipase). Fructose diet led to increased 11βHSD1 and H6PDH expression and elevated corticosterone level within the adipose tissue, which was paralleled with enhanced GR nuclear accumulation. Although the animals did not develop obesity, nonesterified fatty acid and plasma triglyceride levels were elevated, indicating that fructose, through enhanced prereceptor metabolism of glucocorticoids, could set the environment for possible later onset of obesity. 相似文献
18.
19.
20.