首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular determinants of permeation through the cation channel TRPV4   总被引:8,自引:0,他引:8  
We have studied the molecular determinants of ion permeation through the TRPV4 channel (VRL-2, TRP12, VR-OAC, and OTRPC4). TRPV4 is characterized by both inward and outward rectification, voltage-dependent block by Ruthenium Red, a moderate selectivity for divalent versus monovalent cations, and an Eisenman IV permeability sequence. We identify two aspartate residues, Asp(672) and Asp(682), as important determinants of the Ca(2+) sensitivity of the TRPV4 pore. Neutralization of either aspartate to alanine caused a moderate reduction of the relative permeability for divalent cations and of the degree of outward rectification. Neutralizing both aspartates simultaneously caused a much stronger reduction of Ca(2+) permeability and channel rectification and additionally altered the permeability order for monovalent cations toward Eisenman sequence II or I. Moreover, neutralizing Asp(682) but not Asp(672) strongly reduces the affinity of the channel for Ruthenium Red. Mutations to Met(680), which is located at the center of a putative selectivity filter, strongly reduced whole cell current amplitude and impaired Ca(2+) permeation. In contrast, neutralizing the only positively charged residue in the putative pore region, Lys(675), had no obvious effects on the properties of the TRPV4 channel pore. Our findings delineate the pore region of TRPV4 and give a first insight into the possible architecture of its permeation pathway.  相似文献   

2.
The selectivity filter of the cation channel TRPM4   总被引:5,自引:0,他引:5  
Transient receptor potential channel melastatin subfamily (TRPM) 4 and its close homologue, TRPM5, are the only two members of the large transient receptor potential superfamily of cation channels that are impermeable to Ca(2+). In this study, we located the TRPM4 selectivity filter and investigated possible structural elements that render it Ca(2+)-impermeable. Based on homology with known cation channel pores, we identified an acidic stretch of six amino acids in the loop between transmembrane helices TM5 and TM6 ((981)EDMDVA(986)) as a potential selectivity filter. Substitution of this six-amino acid stretch with the selectivity filter of TRPV6 (TIIDGP) resulted in a functional channel that combined the gating hallmarks of TRPM4 (activation by Ca(2+), voltage dependence) with TRPV6-like sensitivity to block by extracellular Ca(2+) and Mg(2+) as well as Ca(2+) permeation. Neutralization of Glu(981) resulted in a channel with normal permeability properties but a strongly reduced sensitivity to block by intracellular spermine. Neutralization of Asp(982) yielded a functional channel that exhibited extremely fast desensitization (tau < 5 s), possibly indicating destabilization of the pore. Neutralization of Asp(984) resulted in a non-functional channel with a dominant negative phenotype when coexpressed with wild type TRPM4. Combined neutralization of all three acidic residues resulted in a functional channel whose voltage dependence was shifted toward very positive potentials. Substitution of Gln(977) by a glutamate, the corresponding residue in divalent cation-permeable TRPM channels, altered the monovalent cation permeability sequence and resulted in a pore with moderate Ca(2+) permeability. Our findings delineate the selectivity filter of TRPM channels and provide the first insight into the molecular basis of monovalent cation selectivity.  相似文献   

3.
TRPV6 (CaT1/ECaC2), a highly Ca(2+)-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the channel by intracellular Mg(2+). Mg(2+) blocks the channel by binding to a site within the transmembrane electrical field where it interacts with permeant cations. The block is relieved at positive potentials, indicating that under these conditions Mg(2+) is able to permeate the selectivity filter of the channel. Although sizeable outward monovalent currents were recorded in the absence of intracellular Mg(2+), outward conductance is still approximately 10 times lower than inward conductance under symmetric, divalent-free ionic conditions. This Mg(2+)-independent rectification was preserved in inside-out patches and not altered by high intracellular concentrations of spermine, indicating that TRPV6 displays intrinsic rectification. Neutralization of a single aspartate residue within the putative pore loop abolished the Mg(2+) sensitivity of the channel, yielding voltage-independent, moderately inwardly rectifying monovalent currents in the presence of intracellular Mg(2+). The effects of intracellular Mg(2+) on TRPV6 are partially reminiscent of the gating mechanism of inwardly rectifying K(+) channels and may represent a novel regulatory mechanism for TRPV6 function in vivo.  相似文献   

4.
Replacement of aspartate residue 541 by alanine (D541A) in the pore of TRPV6 channels in mice disrupts Ca(2+) absorption by the epididymal epithelium, resulting in abnormally high Ca(2+) concentrations in epididymal luminal fluid and in a dramatic but incomplete loss of sperm motility and fertilization capacity, raising the possibility of residual activity of channels formed by TRPV6(D541A) proteins (Weissgerber, P., Kriebs, U., Tsvilovskyy, V., Olausson, J., Kretz, O., Stoerger, C., Vennekens, R., Wissenbach, U., Middendorff, R., Flockerzi, V., and Freichel, M. (2011) Sci. Signal. 4, ra27). It is known from other cation channels that introducing pore mutations even if they largely affect their conductivity and permeability can evoke considerably different phenotypes compared with the deletion of the corresponding protein. Therefore, we generated TRPV6-deficient mice (Trpv6(-/-)) by deleting exons encoding transmembrane domains with the pore-forming region and the complete cytosolic C terminus harboring binding sites for TRPV6-associated proteins that regulate its activity and plasma membrane anchoring. Using this strategy, we aimed to determine whether the TRPV6(D541A) pore mutant still contributes to residual channel activity and/or channel-independent functions in vivo. Trpv6(-/-) males reveal severe defects in fertility and motility and viability of sperm and a significant increase in epididymal luminal Ca(2+) concentration that is mirrored by a lack of Ca(2+) uptake by the epididymal epithelium. Therewith, Trpv6 excision affects epididymal Ca(2+) handling and male fertility to the same extent as the introduction of the D541A pore mutation, arguing against residual functions of the TRPV6(D541A) pore mutant in epididymal epithelial cells.  相似文献   

5.
The molecular basis for divalent cationic permeability in transient receptor potential melastatin subtype (TRPM) channels is not fully understood. Here we studied the roles of all eight acidic residues, glutamate or aspartate, and also the glutamine residue between pore helix and selectivity filter in the pore of TRPM2 channel. Mutants with alanine substitution in each of the acidic residues, except Glu-960 and Asp-987, formed functional channels. These channels exhibited similar Ca(2+) and Mg(2+) permeability to wild type channel, with the exception of the E1022A mutant, which displayed increased Mg(2+) permeability. More conservative E960Q, E960D, and D987N mutations also led to loss of function. The D987E mutant was functional and showed greater Ca(2+) permeability along with concentration-dependent inhibition of Na(+)-carrying currents by Ca(2+). Incorporation of negative charge in place of Gln-981 between the pore helix and selectivity filter by changing it to glutamate, which is present in the more Ca(2+)-permeable TRPM channels, substantially increased Ca(2+) permeability. Expression of concatemers linking wild type and E960D mutant subunits resulted in functional channels that exhibited reduced Ca(2+) permeability. These data taken together suggest that Glu-960, Gln-981, Asp-987, and Glu-1022 residues are engaged in determining divalent cationic permeation properties of the TRPM2 channel.  相似文献   

6.
TRPV5, a member of transient receptor potential (TRP) superfamily of ion channels, plays a crucial role in epithelial calcium transport in the kidney. This channel has a high selectivity for Ca(2+) and is tightly regulated by intracellular Ca(2+) concentrations. Recently it was shown that the molecular basis of deafness in varitint-waddler mouse is the result of hair cell death caused by the constitutive activity of transient receptor potential mucolipin 3 (TRPML3) channel carrying a helix breaking mutation, A419P, at the intracellular proximity of the fifth transmembrane domain (TM5). This mutation significantly elevates intracellular Ca(2+) concentration and causes rapid cell death. Here we show that substituting the equivalent location in TRPV5, the M490, to proline significantly modulates Ca(2+)-dependent inactivation of TRPV5. The single channel conductance, time constant of inactivation (τ) and half maximal inhibition constant (IC(50)) of TRPV5(M490P) were increased compared to TRPV5(WT). Moreover TRPV5(M490P) showed lower Ca(2+) permeability. Out of different point mutations created to characterize the importance of M490 in Ca(2+)-dependent inactivation, only TRPV5(M490P)-expressing cells showed apoptosis and extremely altered Ca(2+)-dependent inactivation. In conclusion, the TRPV5 channel is susceptible for helix breaking mutations and the proximal intracellular region of TM5 of this channel plays an important role in Ca(2+)-dependent inactivation.  相似文献   

7.
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry site for active Ca(2+) reabsorption in the kidney. The TRPV5 channel is a member of the TRP family of cation channels, which are composed of four subunits together forming a central pore. Regulation of channel activity is tightly controlled by the intracellular N and C termini. The TRPV5 C terminus regulates channel activity by various mechanisms, but knowledge regarding the role of the N terminus remains scarce. To study the role of the N terminus in TRPV5 regulation, we generated different N-terminal deletion constructs. We found that deletion of the first 32 residues did not affect TRPV5-mediated (45)Ca(2+) uptake, whereas deletion up to residue 34 and 75 abolished channel function. Immunocytochemistry demonstrated that these mutant channels were retained in the endoplasmic reticulum and in contrast to wild-type TRPV5 did not reach the Golgi apparatus, explaining the lack of complex glycosylation of the mutants. A limited amount of mutant channels escaped the endoplasmic reticulum and reached the plasma membrane, as shown by cell surface biotinylation. These channels did not internalize, explaining the reduced but significant amount of these mutant channels at the plasma membrane. Wild-type TRPV5 channels, despite significant plasma membrane internalization, showed higher plasma membrane levels compared with the mutant channels. The assembly into tetramers was not affected by the N-terminal deletions. Thus, the N-terminal residues 34-75 are critical in the formation of a functional TRPV5 channel because the deletion mutants were present at the plasma membrane as tetramers, but lacked channel activity.  相似文献   

8.
Ion selectivity of metazoan voltage-gated Na(+) channels is critical for neuronal signaling and has long been attributed to a ring of four conserved amino acids that constitute the ion selectivity filter (SF) at the channel pore. Yet, in addition to channels with a preference for Ca(2+) ions, the expression and characterization of Na(+) channel homologs from the sea anemone Nematostella vectensis, a member of the early-branching metazoan phylum Cnidaria, revealed a sodium-selective channel bearing a noncanonical SF. Mutagenesis and physiological assays suggest that pore elements additional to the SF determine the preference for Na(+) in this channel. Phylogenetic analysis assigns the Nematostella Na(+)-selective channel to a channel group unique to Cnidaria, which diverged >540 million years ago from Ca(2+)-conducting Na(+) channel homologs. The identification of Cnidarian Na(+)-selective ion channels distinct from the channels of bilaterian animals indicates that selectivity for Na(+) in neuronal signaling emerged independently in these two animal lineages.  相似文献   

9.
Myers BR  Bohlen CJ  Julius D 《Neuron》2008,58(3):362-373
TRP cation channels function as cellular sensors in uni- and multicellular eukaryotes. Despite intensive study, the mechanisms of TRP channel activation by chemical or physical stimuli remain poorly understood. To identify amino acid residues crucial for TRP channel gating, we developed an unbiased, high-throughput genetic screen in yeast that uncovered rare, constitutively active mutants of the capsaicin receptor, TRPV1. We show that mutations within the pore helix domain dramatically increase basal channel activity and responsiveness to chemical and thermal stimuli. Mutation of corresponding residues within two related TRPV channels leads to comparable effects on their activation properties. Our data suggest that conformational changes in the outer pore region are critical for determining the balance between open and closed states, providing evidence for a general role for this domain in TRP channel activation.  相似文献   

10.
TRPV5 and TRPV6 are members of the superfamily of transient receptor potential (TRP) channels and facilitate Ca(2+) influx in a variety of epithelial cells. The activity of these Ca(2+) channels is tightly controlled by the intracellular Ca(2+) concentration in close vicinity to the channel mouth. The molecular mechanism underlying the Ca(2+)-dependent activity of TRPV5/TRPV6 is, however, still unknown. Here, the putative role of calmodulin (CaM) as the Ca(2+) sensor mediating the regulation of channel activity was investigated. Overexpression of Ca(2+)-insensitive CaM mutants (CaM(1234) and CaM(34)) significantly reduced the Ca(2+) as well as the Na(+) current of TRPV6- but not that of TRPV5-expressing HEK293 cells. By combining pull-down assays and co-immunoprecipitations, we demonstrated that CaM binds to both TRPV5 and TRPV6 in a Ca(2+)-dependent fashion. The binding of CaM to TRPV6 was localized to the transmembrane domain (TRPV6(327-577)) and consensus CaM-binding motifs located in the N (1-5-10 motif, TRPV6(88-97)) and C termini (1-8-14 motif, TRPV6(643-656)), suggesting a mechanism of regulation involving multiple interaction sites. Subsequently, chimeric TRPV6/TRPV5 proteins, in which the N and/or C termini of TRPV6 were substituted by that of TRPV5, were co-expressed with CaM(34) in HEK293 cells. Exchanging, the N and/or the C termini of TRPV6 by that of TRPV5 did not affect the CaM(34)-induced reduction of the Ca(2+) and Na(+) currents. These results suggest that CaM positively affects TRPV6 activity upon Ca(2+) binding to EF-hands 3 and 4, located in the high Ca(2+) affinity CaM C terminus, which involves the N and C termini and the transmembrane domain of TRPV6.  相似文献   

11.
The transient receptor potential type V5 channel (TRPV5) is a Ca2+-selective TRP channel important for epithelial Ca2+ transport. Intracellular Mg2+ causes a fast voltage-dependent block of the TRPV5 channel by binding to the selectivity filter. Here, we report that intracellular Mg2+ binding to the selectivity filter of TRPV5 also causes a slower reversible conformational change leading to channel closure. We further report that PIP2 activates TRPV5. Activation of TRPV5 by PIP2 is independent of Mg2+. Yet, PIP2 decreases sensitivity of the channel to the Mg2+-induced slow inhibition. Mutation of aspartate-542, a critical Mg2+-binding site in the selectivity filter, abolishes Mg2+-induced slow inhibition. PIP2 has no effects on Mg2+-induced voltage-dependent block. Thus, PIP2 prevents the Mg2+-induced conformational change without affecting Mg2+ binding to the selectivity filter. Hydrolysis of PIP2 via receptor activation of phospholipase C sensitizes TRPV5 to the Mg2+-induced slow inhibition. These results provide a novel mechanism for regulation of TRP channels by phospholipase C-activating hormones via alteration of the sensitivity to intracellular Mg2+.  相似文献   

12.
The Arabidopsis phloem channel AKT3 is the founder of a subfamily of shaker-like plant potassium channels characterized by weak rectification, Ca(2+) block, proton inhibition, and, as shown in this study, K(+) sensitivity. In contrast to inward-rectifying, acid-activated K(+) channels of the KAT1 family, extracellular acidification decreases AKT3 currents at the macroscopic and single-channel levels. Here, we show that two distinct sites within the outer mouth of the K(+)-conducting pore provide the molecular basis for the pH sensitivity of this phloem channel. After generation of mutant channels and functional expression in Xenopus oocytes, we identified the His residue His-228, which is proximal to the K(+) selectivity filter (GYGD) and the distal Ser residue Ser-271, to be involved in proton susceptibility. Mutations of these sites, H228D and S271E, drastically reduced the H(+) and K(+) sensitivity of AKT3. Although in K(+)-free bath solutions outward K(+) currents were abolished completely in wild-type AKT3, S271E as well as the AKT3-HDSE double mutant still mediated K(+) efflux. We conclude that the pH- and K(+)-dependent properties of the AKT3 channel involve residues in the outer mouth of the pore. Both properties, H(+) and K(+) sensitivity, allow the fine-tuning of the phloem channel and thus seem to represent important elements in the control of membrane potential and sugar loading.  相似文献   

13.
Yeh BI  Kim YK  Jabbar W  Huang CL 《The EMBO journal》2005,24(18):3224-3234
The transient receptor potential channel TRPV5 constitutes the apical entry pathway for transepithelial Ca2+ transport. We showed that TRPV5 was inhibited by both physiological intra- and extracellular acid pH. Inhibition of TRPV5 by internal protons was enhanced by extracellular acidification. Similarly, inhibition by external protons was enhanced by intracellular acidification. Mutation of either an extra- or an intracellular pH sensor blunted the cross-inhibition by internal and external protons. Both internal and external protons regulated the selectivity filter gate. Using the substituted cysteine accessibility method, we found that intracellular acidification of TRPV5 caused a conformational change of the pore helix consistent with clockwise rotation along its long axis. Thus, rotation of pore helix caused by internal protons facilitates closing of TRPV5 by external protons. This regulation by protons likely contributes to pathogenesis of disturbances of Ca2+ transport in many diseased states. Rotation of pore helix may be a common mechanism for cross-regulation of ion channels by extra- and intracellular signals.  相似文献   

14.
The molecular assembly of the epithelial Ca(2+) channels (TRPV5 and TRPV6) was investigated to determine the subunit stoichiometry and composition. Immunoblot analysis of Xenopus laevis oocytes expressing TRPV5 and TRPV6 revealed two specific bands of 75 and 85-100 kDa, corresponding to the core and glycosylated proteins, respectively, for each channel. Subsequently, membranes of these oocytes were sedimented on sucrose gradients. Immuno blotting revealed that TRPV5 and TRPV6 complexes migrate with a mol. wt of 400 kDa, in line with a tetrameric structure. The tetrameric stoichiometry was confirmed in an electrophysiological analysis of HEK293 cells co-expressing concatemeric channels together with a TRPV5 pore mutant that reduced Cd(2+) sensitivity and voltage-dependent gating. Immuno precipitations using membrane fractions from oocytes co-expressing TRPV5 and TRPV6 demonstrated that both channels can form heteromeric complexes. Expression of all possible heterotetrameric TRPV5/6 complexes in HEK293 cells resulted in Ca(2+) channels that varied with respect to Ca(2+)-dependent inactivation, Ba(2+) selectivity and pharmacological block. Thus, Ca(2+)-transporting epithelia co-expressing TRPV5 and TRPV6 can generate a pleiotropic set of functional heterotetrameric channels with different Ca(2+) transport kinetics.  相似文献   

15.
We tested the hypothesis that key residues in a putative intraluminal loop contribute to determination of ion permeation through the intracellular Ca(2+) release channel (inositol 1,4,5-trisphosphate receptors (IP(3)Rs)) that is gated by the second messenger inositol 1,4,5-trisphosphate (IP(3)). To accomplish this, we mutated residues within the putative pore forming region of the channel and analyzed the functional properties of mutant channels using a (45)Ca(2+) flux assay and single channel electrophysiological analyses. Two IP(3)R mutations, V2548I and D2550E, retained the ability to release (45)Ca(2+) in response to IP(3). When analyzed at the single channel level; both recombinant channels had IP(3)-dependent open probabilities similar to those observed in wild-type channels. The mutation V2548I resulted in channels that exhibited a larger K(+) conductance (489 +/- 13 picosiemens (pS) for V2548I versus 364 +/- 5 pS for wild-type), but retained a Ca(2+) selectivity similar to wild-type channels (P(Ca(2+)):P(K(+)) approximately 4:1). Conversely, D2550E channels were nonselective for Ca(2+) over K(+) (P(Ca(2+)):P(K(+)) approximately 0.6:1), while the K(+) conductance was effectively unchanged (391 +/- 4 pS). These results suggest that amino acid residues Val(2548) and Asp(2550) contribute to the ion conduction pathway. We propose that the pore of IP(3)R channels has two distinct sites that control monovalent cation permeation (Val(2548)) and Ca(2+) selectivity (Asp(2550)).  相似文献   

16.
The transient receptor potential type V5 (TRPV5) channel is a six-transmembrane domain ion channel that is highly selective to Ca(2+). To study the topology of the selectivity filter using the substituted cysteine accessibility method (SCAM), cysteine mutants at positions 541-547 were studied as heterotetramers using dimeric constructs that couple the control channel in tandem with a cysteine-bearing subunit. Whole cell currents of dimeric constructs D542C, G543C, P544C, A545C, and Y547C were rapidly inhibited by positively charged 2-(trimethyl ammonium)methyl methane thiosulfonate bromide (MTSMT), 2-(aminoethyl)methane thiosulfonate bromide (MTSEA), and 2-(trimethyl ammonium)ethyl methane thiosulfonate bromide (MTSET) reagents, whereas D542C, P544C, and A545C were inhibited only by negatively charged sodium 2-(sulfonatoethyl)methane thiosulfonate (MTSES). In contrast, the I541C dimer remained insensitive to positive and negative reagents. However, I541C/D542G and I541C/D542N dimeric constructs were rapidly (<30 s) and strongly inhibited by positively and negatively charged methane thiosulfonate reagents, suggesting that removing two of the four carboxylate residues at position 542 disrupts a constriction point in the selectivity filter. Taken together, these results establish that the side chains of contiguous amino acids in the selectivity filter of TRPV5 are rapidly accessible from the external medium, in contrast to the three-dimensional structure of the selectivity filter in K(+) channels, where main chain carbonyls were shown to project toward a narrow permeation pathway. The I541C data further suggest that the selectivity filter of the TRPV5 channel espouses a specific conformation that restrains accessibility in the presence of four carboxylate residues at position 542.  相似文献   

17.
Bone is the major store for Ca(2+) in the body and plays an important role in Ca(2+) homeostasis. During bone formation and resorption Ca(2+) must be transported to and from bone by osteoblasts and osteoclasts, respectively. However, little is known about the Ca(2+) transport machinery in these bone cells. In this study, we examined the epithelial Ca(2+) channel TRPV6 in bone. TRPV6 mRNA is expressed in human and mouse osteoblast-like cells as well as in peripheral blood mononuclear cell-derived human osteoclasts and murine tibial bone marrow-derived osteoclasts. Also other transcellular Ca(2+) transport genes, calbindin-D(9k) and/or -D(28K), Na(+)/Ca(2+) exchanger 1, and plasma membrane Ca(2+) ATPase (PMCA1b) were expressed in these bone cell types. Immunofluorescence and confocal microscopy on human osteoblasts and osteoclasts and mouse osteoclasts revealed TRPV6 protein at the apical domain and PMCA1b at the osteoidal domain of osteoblasts, whereas in osteoclasts TRPV6 was predominantly found at the bone-facing site. TRPV6 was dynamically expressed in human osteoblasts, showing maximal expression during mineralization of the extracellular matrix. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) did not change TRPV6 expression in both mineralizing and non-mineralizing SV-HFO cultures. Lentiviral transduction-mediated overexpression of TRPV6 in these cells did not alter mineralization. Bone microarchitecture and mineralization were unaffected in Trpv6(D541A/D541A) mice in which aspartate 541 in the pore region was replaced with alanine to render TRPV6 channels non-functional. In summary, TRPV6 and other proteins involved in transcellular Ca(2+) transport are dynamically expressed in bone cells, while TRPV6 appears not crucial for bone metabolism and matrix mineralization in mice.  相似文献   

18.
High-affinity, intrapore binding of Ca(2+) over competing ions is the essential feature in the ion selectivity mechanism of voltage-gated Ca(2+) channels. At the same time, several million Ca(2+) ions can travel each second through the pore of a single open Ca(2+) channel. How such high Ca(2+) flux is achieved in the face of tight Ca(2+) binding is a current area of inquiry, particularly from a structural point of view. The ion selectivity locus comprises four glutamate residues within the channel's pore. These glutamates make unequal contributions to Ca(2+) binding, underscoring a role for neighboring residues in pore function. By comparing two Ca(2+) channels (the L-type alpha(1C), and the non-L-type alpha(1A)) that differ in their pore properties but only differ at a single amino acid position near the selectivity locus, we have identified the amino-terminal neighbor of the glutamate residue in motif III as a determinant of pore function. This position is more important in the function of alpha(1C) channels than in alpha(1A) channels. For a systematic series of mutations at this pore position in alpha(1C), both unitary Ba(2+) conductance and Cd(2+) block of Ba(2+) current varied with residue volume. Pore mutations designed to make alpha(1C) more like alpha(1A) and vice versa revealed that relative selectivity for Ba(2+) over K(+) depended almost solely on pore sequence and not channel type. Analysis of thermodynamic mutant cycles indicates that the motif III neighbor normally interacts in a cooperative fashion with the locus, molding the functional behavior of the pore.  相似文献   

19.
Transient receptor potential channels are involved in sensing chemical and physical changes inside and outside of cells. TRPV3 is highly expressed in skin keratinocytes, where it forms a nonselective cation channel activated by hot temperatures in the innocuous and noxious range. The channel has also been implicated in flavor sensation in oral and nasal cavities as well as being a molecular target of some allergens and skin sensitizers. TRPV3 is unique in that its activity is sensitized upon repetitive stimulations. Here we investigated the role of calcium ions in the sensitization of TRPV3 to repetitive stimulations. We show that the sensitization is accompanied by a decrease of Ca(2+)-dependent channel inhibition mediated by calmodulin acting at an N-terminal site (amino acids 108-130) and by an acidic residue (Asp(641)) at the pore loop of TRPV3. These sites also contribute to the voltage dependence of TRPV3. During sensitization, the channel displayed a gradual shift of the voltage dependence to more negative potentials as well as uncoupling from voltage sensing. The initial response to ligand stimulation was increased and sensitization to repetitive stimulations was decreased by increasing the intracellular Ca(2+)-buffering strength, inhibiting calmodulin, or disrupting the calmodulin-binding site. Mutation of Asp(641) to Asn abolished the high affinity extracellular Ca(2+)-mediated inhibition and greatly facilitated the activation of TRPV3. We conclude that Ca(2+) inhibits TRPV3 from both the extracellular and intracellular sides. The inhibition is sequentially reduced, appearing as sensitization to repetitive stimulations.  相似文献   

20.
A reduced model of a sodium channel is analyzed using Dynamic Monte Carlo simulations. These include the first simulations of ionic current under approximately physiological ionic conditions through a model sodium channel and an analysis of how mutations of the sodium channel's DEKA selectivity filter motif transform the channel from being Na(+) selective to being Ca(2+) selective. Even though the model of the pore, amino acids, and permeant ions is simplified, the model reproduces the fundamental properties of a sodium channel (e.g., 10 to 1 Na(+) over K(+) selectivity, Ca(2+) exclusion, and Ca(2+) selectivity after several point mutations). In this model pore, ions move through the pore one at a time by simple diffusion and Na(+) versus K(+) selectivity is due to both the larger K(+) not fitting well into the selectivity filter that contains amino acid terminal groups and K(+) moving more slowly (compared to Na(+)) when it is in the selectivity filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号