首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Using ventricular cardiomyocytes of the common frog, Rana temporaria, we investigated the metabolic strategies employed by the heart to tolerate 4 mo of hypoxic submergence (overwintering) as well as acute bouts of anoxia. In contrast to what is observed for the whole animal, there was no change in oxygen consumption in cardiomyocytes isolated from normoxic frogs compared with those isolated from 4-mo hypoxic animals. Furthermore, cells from both normoxic and hypoxic frogs were able to completely recover oxygen consumption following 30 min of acute anoxia. From estimates of ATP turnover, it appears that frog cardiomyocytes are capable of a profound, completely reversible metabolic depression, such that ATP turnover is reduced by >90% of control levels during anoxia but completely recovers with reoxygenation. Moreover, this phenomenon is also observed in frogs that have been subjected to 4 mo of extended hypoxia. We found a significant increase in the stress protein, hsp70, after 1 mo of hypoxic submergence, which may contribute to the heart's remarkable hypoxia and anoxia tolerance and may act to defend metabolism during the overwintering period.  相似文献   

2.
The effects of the progressive production of hydrogen ions and inorganic phosphate from adenine nucleotides on the lowering of pH in heart muscle has been investigated in dog myocardium maintained under anoxic conditions in vitro at 37 degrees C. Tissue samples were taken at 15-min intervals for up to 105 min and the following biochemical parameters determined: pH, lactate, Pi, ATP, ADP, AMP, G6P, and PC in selected instances. From these data the net proton changes during prolonged anoxia were calculated, assuming homogeneity of the tissue milieu. Net proton change was negative after 15 min and became increasingly more so throughout the remainder of the experimental period, indicating that adenine nucleotide catabolism in fact has a protective effect against fall in pH. When tissue pH falls to ca. 6.2 (45-60 min anoxia), proton production due to lactic acid is reduced by approximately 16% because of absorption of protons by phosphate and ammonia liberated from the nucleotides.  相似文献   

3.
The functional activity, adenine nucleotides, and creatine phosphate content of spontaneously beating isolated rabbit atria were measured prior to anoxia, after 1 hr anoxia, and at the end of 1 hr reoxygenation at pH 6.7 and 7.2 During anoxia at pH 7.2 there was 13.3% loss of adenine nucleotides pool, 35.2% loss of ATP, 36.2% increase in ADP, 200% increase in AMP, and a decrease to 8.8% of CP assayed to the beating atria in oxygen. At pH 6.7 there was almost the same decrease in CP, about 10% decrease in ATP, no change in total adenine nucleotides, no change in AMP and a higher increase in ADP (88.7%). The postanoxic recovery was much more complete when the pH was 6.7 during anoxia, and the first 40 min of reoxygenation. The extent of recovery of functional activity correlated well with the level of ATP in all cases not CP. Since the adenylate kinase and ATPase activity both decrease at acidic pH, their combined diminution would tend to preserve the adenine nucleotide pool and thus the better recovery at pH 6.7, because of a decrease in energy demand and unavailability of AMP for the degradation process. This study also supports the notion of compartmented adenine nucleotides connected by the creatine phosphate-creatine energy shuttle.  相似文献   

4.
The effect of acute hypoxia on adenine nucleotides, glutamate, aspartate, alanine and respiration of heart mitochondria was studied in rats. The losses of intramitochondrial adenine nucleotides (ATP+ADP+AMP) during hypoxia were related to depression of state 3 respiration supported by glutamate and malate, as well as decrease in uncoupled respiration. Hypoxia had less prominent effect on succinate-dependent state 3 respiration. Non-phosphorylating (state 4) respiratory rates and ADP/O ratios were slightly affected by oxygen deprivation. Glutamate fall in tissue and mitochondria of hypoxic hearts was concomitant with significant increase in tissue alanine and mitochondrial aspartate. The losses of intramitochondrial ATP and respiratory activity with NAD-dependent substrates during hypoxia were related to a decrease in mitochondrial glutamate. The results suggest that hypoxia-induced impairment of complex I of respiratory chain and a loss of glutamate from the matrix may limit energy-producing capacity of heart mitochondria.  相似文献   

5.
The concentrations of adenine nucleotides were determined in germinating lettuce (Lactuca sativa) seeds after transitions from air to hypoxic or anoxic atmospheres. The ratio ATP/ADP and the energy charge were rapidly lowered after the transitions and remained stable at low values for hours. The energy charge in anoxia stabilized at a value close to 0.3. After 24 h in anoxia the energy charge rose rapidly to high values (0.9) when N2 was replaced by air. The metabolic properties of lettuce seeds had then been conversed for hours at low energy charge. In hypoxia the O2 uptake was decreased and the energy charge was stabilized at values intermediate between that in air and that in anoxia. When the O2 partial pressures (pO2) were 5 and 2kPa, the values of O2 uptake were one-third and one-sixth of that in air, and the energy charges were 0.7 and 0.5. These results show that the energy charge is regulated over a wide range of values. The ratio ATP/ADP and the energy charge are indicators of the limitation of metabolic activity by hypoxia.  相似文献   

6.
The relationship between ATP and energy charge was studied in individuals of Cirolana borealis under heavy metabolic stress caused by anoxia or exposure to toluene. Prolonged anoxia led to a lowering of the ATP content to about 10% after 4 days, with a simultaneous decrease in energy charge to about 0.25. A lowering of the total adenylate pool reduced the fall in energy charge somewhat, but this effect was marked only in late anoxia when the individuals had become inactive. Exposure to 0.14 mM toluene for 8 days led to a similar decrease in ATP and energy charge. Exposure to 1.4 mM toluene for 24 h led to only slight changes in the adenine nucleotide pool, although the individuals became narcotized within a few hours. The energy charge associated with moribund individuals thus varied much. The mechanism of energy charge stabilization through reduction of the adenine nucleotide pool as ATP declined seemed to be of little significance for the survival of the individuals.  相似文献   

7.
Experiments were performed to check the tolerance to severe hypoxia of the tissue layers (compact and spongy) of the tortoise heart. The animals were subjected to hypoxia (7% O2) at 18 degrees C, 28 degrees C and 38 degrees C for 30, 6 and 2 hr respectively, or to anoxia for 30 hr at 18 degrees C and 2 hr at 38 degrees C. At 18 degrees C the metabolic alterations caused by a 30 hr hypoxia were mild whereas at 28 degrees C and 38 degrees C the cardiac glycogen was depleted, lactate had accumulated and the phosphate creatine and ATP content had decreased. The extent of these metabolic changes was similar in the compact and in the spongy layers of the heart.  相似文献   

8.
Energy state and vasomotor tone in hypoxic pig lungs   总被引:3,自引:0,他引:3  
To evaluate the role of energy state in pulmonary vascular responses to hypoxia, we exposed isolated pig lungs to decreases in inspired PO2 or increases in perfusate NaCN concentration. Lung energy state was assessed by 31P nuclear magnetic resonance spectroscopy or measurement of adenine nucleotides by high-pressure liquid chromatography in freeze-clamped biopsies. In ventilated lungs, inspired PO2 of 200 (normoxia), 50 (hypoxia), and 0 Torr (anoxia) did not change adenine nucleotides but resulted in steady-state pulmonary arterial pressure (Ppa) values of 15.5 +/- 1.4, 30.3 +/- 1.8, and 17.2 +/- 1.9 mmHg, respectively, indicating vasoconstriction during hypoxia and reversal of vasoconstriction during anoxia. In degassed lungs, similar changes in Ppa were observed; however, energy state deteriorated during anoxia. An increase in perfusate NaCN concentration from 0 to 0.1 mM progressively increased Ppa and did not alter adenine nucleotides, whereas 1 mM reversed this vasoconstriction and caused deterioration of energy state. These results suggest that 1) pulmonary vasoconstrictor responses to hypoxia or cyanide occurred independently of whole lung energy state, 2) the inability of the pulmonary vasculature to sustain hypoxic vasoconstriction during anoxia might be associated with decreased energy state in some lung compartment, and 3) atelectasis was detrimental to whole lung energy state.  相似文献   

9.
In this study, we compared survivorship, heat dissipation and biochemical features of anaerobiosis of two tiger beetle species (Coleoptera: Cicindelidae) exposed to anoxia. One species commonly experiences environmental immersion from rainfall and snowmelt (Cicindela togata), and the habitat of the other (Amblycheila cylindriformis) is not prone to flooding. The ancestral genus, A. cylindriformis, survives anoxia for only 2 days at 25 °C. In response to anoxia, these larvae immediately lose locomotory abilities, tissue concentrations of ATP fall precipitously within 12 h, and significant amounts of lactate are quickly produced. In contrast, C. togata larvae tolerate anoxia for 5 days. Heat dissipation is downregulated to a greater degree than that seen in A. cylindriformis (3.4% versus 14% of standard normoxic rate, respectively), the ability for locomotion is maintained and normoxic levels of ATP are defended for at least 24 h. Lactate is not accumulated until well into anoxic bout, and significant amounts of alanine are also produced. This study provides evidence that tiger beetles differ in physiological responses to anoxia, and that these differences are correlated with flooding risk and with species distribution. Accepted: 1 March 2000  相似文献   

10.
All 20.000 different fish species vary greatly in their ability to tolerate and survive fluctuating oxygen concentrations in the water. Especially fish of the genus Carassius, e.g. the crucian carp and the goldfish, exhibit a remarkable tolerance to limited/absent oxygen concentrations. The metabolic changes of anoxia-tolerant crucian carp were recently studied and published. Contrary to crucian carp, the hypoxia-tolerant common carp cannot survive a complete lack of oxygen (anoxia). Therefore, we studied the 1H-NMR-based metabolomics of brain, heart, liver and white muscle extracts of common carp, subjected to anoxia (0 mg O2 l?1) and hypoxia (0.9 mg O2 l?1) at 5 °C. Specifically, fish were exposed to normoxia (i.e. 9 mg O2 l?1; controls 24 h, 1 week and 2 weeks), acute hypoxia (24 h), chronic hypoxia (1 week) and chronic hypoxia (1 week) with normoxic reoxygenation (1 week). Additionally, we also investigated the metabolic responses of fish to anoxia for 2 h. Both anoxia and hypoxia significantly changed the tissue levels of standard energy metabolites as lactate, glycogen, ATP/ADP and phosphocreatine. Remarkably, anoxia induced increased lactate levels in all tissues except for the heart whereas hypoxia resulted in decreased lactate concentrations in all tissues except for brains. Furthermore, hypoxia and anoxia influenced amino acids (alanine, valine/(iso)leucine) and neurotransmitters levels (GABA, glutamate). Lastly, we also detected ‘other’ i.e. previously not reported compounds to play a role in the present context. Scyllo-inositol levels changed significantly in heart, liver and muscle, providing novel insights into the anoxia/hypoxic responses of the common carp.  相似文献   

11.
The ability of brief hypothermic reperfusion (HtR) to restore hepatic energy metabolism following periods of cold hypoxic preservation was studied in isolated rat livers after storage times of 5, 10, and 24 h. In addition, investigations were performed on the effects of HtR used to restore liver oxidative metabolism in the middle of a prolonged (24 h) hypoxic preservation period. A histidine-lactobionate-raffinose solution was used for the initial cold portal flush in all groups. Results showed that cold hypoxia for either 5 or 10 h yielded livers capable of similar recoveries of ATP, energy charge, and total adenine nucleotides, but that HtR after 24 h cold preservation resulted in reduced regeneration of ATP, a lower energy charge, and a fall in tissue adenine nucleotides. When livers were stored for 24 h but subjected to brief HtR after either 5 or 10 h before return to hypoxic storage, improved recoveries of the energy metabolites were seen over those recorded after 24 h hypoxia alone. The fact that these improvements were not due to an improved supply of adenine nucleotide precursors was demonstrated by studying groups which were given HtR with perfusate containing precursors of adenine nucleotides (adenosine, adenine, and inosine) after 24 h cold hypoxia. These data are consistent with the hypothesis that poor metabolic recovery after long-term hepatic cold preservation results more from decreased mitochondrial oxidative phosphorylation than from a lack of precursors for adenine nucleotide resynthesis. In addition, restoring oxidative metabolism at hypothermia for brief periods can to some extent protect final metabolic status after prolonged storage.  相似文献   

12.
The effect of hemorrhagic shock, hypoxemia, and anoxia on the levels of adenine and pyridine nucleotides of liver and kidney was assessed. ATP levels in liver and kidney of animals in shock or animals subjected to 7 min of anoxia decreased by 85 and 73%, respectively. Under hypoxic conditions (arterial PO2 AT 18 MMHg), the decrease was only 62 and 48% in liver and kidney, respectively. Tissue NAD levels decreased and NADH levels increased during shock but were found to be essentially unaltered during experimental hypoxemia. Thus, shock produced greater alterations in adenine and pyridine nucleotides than did hypoxemia alone, indicating that stagnant hypoxemia due to shock is more deleterious to energy metabolism than is severe hypoxemia with an otherwise normal circulation. The results also suggest that if an anterial PO2 OF 18 MMHg represents the initial stages of tissue hypoxia, then tissue ATP levels are a more sensitive indicator of this than NAD levels.  相似文献   

13.
Compartmentation and NMR visibility of mitochondrial adenine nucleotides were quantitated in isolated rat liver mitochondria respiring on succinate and glutamate in vitro at 8 and 25 degrees C. Intra- and extramitochondrial nucleotides were discriminated by adding the chelator trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA). T1 values of about 0.2-0.3 s for magnesium-bound matrix nucleotides were determined. Adenine nucleotide T1 values were influenced by the ionic environment; only magnesium-free ATP T1's were affected by temperature. Intra- and extramitochondrial adenine nucleotide ratios were varied in ATP-loaded mitochondria with added ATP and phosphate using the mitochondrial inhibitors oligomycin and carboxyatractyloside, and adenine nucleotides were quantitated by using NMR and enzymatic analysis. There was good agreement between matrix ATP concentrations (magnesium-bound ATP) calculated by using NMR and standard biochemical techniques. Although matrix ADP could be detected by NMR, it was difficult to quantitate accurately by NMR. The data indicate that mitochondrial ATP is NMR-visible in isolated mitochondria in vitro.  相似文献   

14.
Oxygen deprivation limits the energy available for cellular processes and yet no comprehensive ATP budget has been reported for any plant species under O(2) deprivation, including Oryza sativa. Using 3-d-old coleoptiles of a cultivar of O. sativa tolerant to flooding at germination, (i) rates of ATP regeneration in coleoptiles grown under normoxia (aerated solution), hypoxia (3% O(2)), and anoxia (N(2)) and (ii) rates of synthesis of proteins, lipids, nucleic acids, and cell walls, as well as K(+) transport, were determined. Based on published bioenergetics data, the cost of synthesizing each class of polymer and the proportion of available ATP allocated to each process were then compared. Protein synthesis consumed the largest proportion of ATP synthesized under all three oxygen regimes, with the proportion of ATP allocated to protein synthesis in anoxia (52%) more than double that in normoxic coleoptiles (19%). Energy allocation to cell wall synthesis was undiminished in hypoxia, consistent with preferential elongation typical of submerged coleoptiles. Lipid synthesis was also conserved strongly in O(2) deficits, suggesting that membrane integrity was maintained under anoxia, thus allowing K(+) to be retained within coleoptile cells. Rates of protein synthesis in coleoptiles from rice cultivars with contrasting tolerance to oxygen deficits (including mutants deficient in fermentative enzymes) confirmed that synthesis and turnover of proteins always accounted for most of the ATP consumed under anoxia. It is concluded that successful establishment of rice seedlings under water is largely due to the capacity of coleoptiles to allocate energy to vital processes, particularly protein synthesis.  相似文献   

15.
Studies with rat thymocytes labeled with [14C]adenine and fractionated by digitonin treatment revealed that the cytoplasm of these cells contains about 60% of the total adenine nucleotide pool with a higher ATP/ADP ratio and metabolic activity as compared with the structural components. The incorporation of [14C]adenine and [14C]adenosine into thymocyte adenine nucleotides results in predominant labeling of cytoplasmic ATP, in which the specific radioactivity of this nucleoside triphosphate is two and three times as high as in subcellular structures. Concanavalin A decreases the ATP level in thymocytes without changing its specific radioactivity. This compound does not influence the total content and amount labeled adenine nucleotides in the structural fraction. Papaverine accelerates the catabolism of ATP, mainly in thymocyte cytoplasm and, in a lesser degree, in its structural fraction. In each fraction the papaverine-induced catabolism of ATP is localized in the compartment which is more intensively labeled with [14C]adenine than the whole fractionation ATP pool. Adenosine markedly accelerates adenine nucleotide catabolism in the cytoplasmic and structural fractions of thymocytes; however, only in the first one of them this acceleration is due to ATP elevation. Papaverine and adenosine do not directly influence either the content or specific radioactivity of adenine nucleotides of the structural fraction isolated from [14C]adenine-labeled thymocytes.  相似文献   

16.
17.
The Western painted turtle survives months without oxygen. A key adaptation is a coordinated reduction of cellular ATP production and utilization that may be signaled by changes in the concentrations of reactive oxygen species (ROS) and cyclic nucleotides (cAMP and cGMP). Little is known about the involvement of cyclic nucleotides in the turtle’s metabolic arrest and ROS have not been previously measured in any facultative anaerobes. The present study was designed to measure changes in these second messengers in the anoxic turtle. ROS were measured in isolated turtle brain sheets during a 40-min normoxic to anoxic transition. Changes in cAMP and cGMP were determined in turtle brain, pectoralis muscle, heart and liver throughout 4 h of forced submergence at 20–22°C. Turtle brain ROS production decreased 25% within 10 min of cyanide or N2-induced anoxia and returned to control levels upon reoxygenation. Inhibition of electron transfer from ubiquinol to complex III caused a smaller decrease in [ROS]. Conversely, inhibition of complex I increased [ROS] 15% above controls. In brain [cAMP] decreased 63%. In liver [cAMP] doubled after 2 h of anoxia before returning to control levels with prolonged anoxia. Conversely, skeletal muscle and heart [cAMP] remained unchanged; however, skeletal muscle [cGMP] became elevated sixfold after 4 h of submergence. In liver and heart [cGMP] rose 41 and 127%, respectively, after 2 h of anoxia. Brain [cGMP] did not change significantly during 4 h of submergence. We conclude that turtle brain ROS production occurs primarily between mitochondrial complexes I and III and decreases during anoxia. Also, cyclic nucleotide concentrations change in a manner suggestive of a role in metabolic suppression in the brain and a role in increasing liver glycogenolysis.  相似文献   

18.
Effects of hypoxia, anoxia, and endogenous ethanol (EtOH) on selected temperature (T(sel)) and activity in goldfish were evaluated. Blood and brain EtOH concentrations ([EtOH]) and brain oxygen partial pressure (PO(2)) were quantified at crucial ambient oxygen pressures. Below a threshold value near 31 Torr, T(sel) decreased as a function of environmental PO(2). T(sel) of 15 degrees C-acclimated fish was approximately 10 degrees C at the onset of anoxia and changed little over 2 h. Activity showed a similar response pattern. Brain [EtOH] was significantly elevated above control levels after 1 h anoxia. In normoxic water, T(sel) remained different in previously anoxic and normoxic control fish for approximately 20 min. Blood [EtOH] of previously anoxic fish remained significantly elevated ([EtOH] >4.0 micromol/g blood), and activity was significantly depressed at 20 min. Brain PO(2) reached normal levels in <3 min. We conclude that [EtOH] (brain or blood) and brain PO(2) are not proximal causes of either behavioral anapyrexia (hypothermia) or inactivity in goldfish exposed to oxygen-depleted environments.  相似文献   

19.
Autumnal changes in total nitrogen, salt-extractable protein and amino acid concentrations in leaves and adjacent bark of black alder [ Ainus glutinosa (L.) Gaertn.], eastern cottonwood ( Populus deltoides Bartr. ex Marsh.) and white basswood ( Tilia heterophylla Vent.) were determined for trees growing on minespoils and a prairiederived loamy soil in central Illinois. The composition of free amino acids in foliage was also determined at peak concentration for each tree species during late senescence. Total nitrogen concentration in the leaves decreased slowly throughout most of the fall for all species. In the final stages of senescence, total leaf nitrogen concentrations were about halved in eastern cottonwood and white basswood but continued to decrease slowly in black alder. The concentration of salt-extractable proteins in leaves of all species peaked early in the fall and then declined prior to leaf abscission. This decline coincided with an increase in the concentration of free amino acids in the leaves. The increase stabilized in both eastern poplar and white basswood but continued in black alder. Glutamine in black alder and eastern cottonwood, and asparagine in white basswood were the most abundant free amino acids at the time of peak concentration of total free amino acids in senescent leaves. Bark of trees of all species had higher nitrogen concentrations and higher proportions of salt-extractable proteins to estimated total proteins after leaf senescence than during the preceding summer. Results indicate that autumnal fluxes in leaf and bark nitrogen fractions of alder can differ substantially from fluxes in other broadleaved winter-deciduous trees in a way which suggests that alder does not effectively conserve leaf nitrogen through retranslocation to bark tissue.  相似文献   

20.
1. Two-day-old rats were exposed at constant temperature to atmospheres containing air and nitrogen with the air content varied in steps from 100 to 0%. By using this system of graded hypoxia a comparison was made between rates of gluconeogenesis from lactate, serine and aspartate in the whole animal and the concentrations of several liver metabolites. 2. Gluconeogenesis, expressed as the percentage incorporation of labelled isotope into glucose plus glycogen, proceeds linearly for 30min when the animals are incubated in a normal air atmosphere, but is completely suppressed if the atmosphere is 100% nitrogen. 3. Preincubation of animals for between 5 and 30min under an atmosphere containing 19% air results in the attainment of a new steady state with respect to gluconeogenesis and hepatic concentrations of ATP, ADP, AMP, lactate, pyruvate, beta-hydroxybutyrate and acetoacetate. 4. When lactate (100mumol), aspartate (20mumol) or serine (20mumol) was injected, it was shown that the more severe the hypoxia the greater the depression of gluconeogenesis. Under conditions when gluconeogenesis was markedly inhibited there were no changes in the degree of phosphorylation of hepatic adenine nucleotides, but free [NAD(+)]/[NADH] ratios fell in both cytosol and mitochondrial compartments of the liver cell. 5. Measurements of total liver NAD(+) and NADH showed that the concentrations of these nucleotide coenzymes changed less with anoxia, in comparison with the concentration ratio of free coenzymes. 6. Calculations showed that the difference in NAD(+)-NADH redox potentials between mitochondrial and cytosol compartments increased with the severity of hypoxia. 7. From the constancy of the concentrations of adenine nucleotides it is concluded that liver of hypoxic rats can conserve ATP by lowering the rate of ATP utilization for gluconeogenesis. Gluconeogenesis may be regulated in turn by the changes in mitochondrial and cytosol redox state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号