首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotes, homologous recombination is an important pathway for the repair of DNA double-strand breaks. We have studied this process in living cells in the yeast Saccharomyces cerevisiae using Rad52 as a cell biological marker. In response to DNA damage, Rad52 redistributes itself and forms foci specifically during S phase. We have shown previously that Rad52 foci are centers of DNA repair where multiple DNA double-strand breaks colocalize. Here we report a correlation between the timing of Rad52 focus formation and modification of the Rad52 protein. In addition, we show that the two ends of a double-strand break are held tightly together in the majority of cells. Interestingly, in a small but significant fraction of the S phase cells, the two ends of a break separate suggesting that mechanisms exist to reassociate and align these ends for proper DNA repair.  相似文献   

2.
In eukaryotes, homologous recombination is an important pathway for the repair of DNA double-strand breaks. We have studied this process in living cells in the yeast Saccharomyces cerevisiae using Rad52 as a cell biological marker. In response to DNA damage, Rad52 redistributes itself and forms foci specifically during S phase. We have shown previously that Rad52 foci are centers of DNA repair where multiple DNA double-strand breaks colocalize. Here we report a correlation between the timing of Rad52 focus formation and modification of the Rad52 protein. In addition, we show that the two ends of a double-strand break are held tightly together in the majority of cells. Interestingly, in a small but significant fraction of the S phase cells, the two ends of a break separate suggesting that mechanisms exist to reassociate and align these ends for proper DNA repair.  相似文献   

3.
The progression of replication forks is often impeded by obstacles that cause them to stall or collapse, and appropriate responses to replication-associated DNA damage are important for genome integrity. Here we identified a new gene, mus7(+), that is involved in the repair of replication-associated DNA damage in the fission yeast Schizosaccharomyces pombe. The Deltamus7 mutant shows enhanced sensitivity to methyl methanesulfonate (MMS), camptothecin, and hydroxyurea, agents that cause replication fork stalling or collapse, but not to ultraviolet light or X-rays. Epistasis analysis of MMS sensitivity indicates that Mus7 functions in the same pathway as Mus81, a subunit of the Mus81-Eme1 structure-specific endonuclease, which has been implicated in the repair of the replication-associated DNA damage. In Deltamus7 and Deltamus81 cells, the repair of MMS-induced DNA double-strand breaks (DSBs) is severely impaired. Moreover, some cells with either mutation are hyper-elongated or enlarged, and most of these cells accumulate in late G2 phase. Spontaneous Rad22 (recombination mediator protein RAD52 homolog) foci increase in S phase to late G2 phase in Deltamus7 and Deltamus81 cells. These results suggest that replication-associated DSBs accumulate in these cells and that Rad22 foci form in the absence of Mus7 or Mus81. We also found that the rate of spontaneous conversion-type recombination is reduced in mitotic Deltamus7 cells, suggesting that Rhp51- (RAD51 homolog) dependent homologous recombination is disturbed in this mutant. From these data, we propose that Mus7 functions in the repair of replication-associated DSBs by promoting RAD51-dependent conversion-type recombination downstream of Rad22 and Mus81.  相似文献   

4.
DNA topoisomerase II (Top2) inhibitors are useful as anticancer agents, mostly by virtue of their ability to induce DNA double-strand breaks (DSBs). These DSBs are repaired almost exclusively by Rad52-dependent homologous recombination (HR) in yeast. However, we have recently shown that in vertebrate cells such lesions are primarily repaired by nonhomologous end-joining, but not HR. This finding, taken together with previous observations that disruption of RAD52 does not severely affect HR in vertebrate cells, makes it highly unlikely that Rad52 contributes to the repair of Top2-mediated DNA damage. However, in this paper we show that chicken cells lacking Rad52 do exhibit increased sensitivity to the Top2 inhibitor VP-16. Remarkably, the level of hypersensitivity of RAD52-null cells was comparable to that of RAD54-null cells, albeit only at high doses. Our data thus provide the first demonstration of a major repair defect associated with loss of Rad52 in vertebrate cells.  相似文献   

5.
Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs.  相似文献   

6.
Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response.  相似文献   

7.
Systems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis. Rad51 and Rad52 are two key proteins in homologous pairing and strand exchange during DSB-induced HR; both are highly conserved in eukaryotes. In this study, we analyzed pathogenic single nucleotide polymorphisms (SNPs) in human RAD51 and RAD52 using the Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant from Tolerant (SIFT) algorithms and observed the effect of mutations in highly conserved domains of RAD51 and RAD52 on DNA damage repair in a Saccharomyces cerevisiae-based system. We identified a number of rad51 and rad52 alleles that exhibited severe DNA repair defects. The functionally inactive SNPs were located near ATPase active site of Rad51 and the DNA binding domain of Rad52. The rad51-F317I, rad52-R52W, and rad52-G107C mutations conferred hypersensitivity to methyl methane sulfonate (MMS)-induced DNA damage and were defective in HR-mediated DSB repair. Our study provides a new approach for detecting functional and loss-of-function genetic polymorphisms and for identifying causal variants in human DNA repair genes that contribute to the initiation or progression of cancer.  相似文献   

8.
Rad51, a eukaryotic RecA homologue, plays a central role in homologous recombinational repair of DNA double-strand breaks (DSBs) in yeast and is conserved from yeast to human. Rad51 shows punctuate nuclear localization in human cells, called Rad51 foci, typically during the S phase (Tashiro, S., N. Kotomura, A. Shinohara, K. Tanaka, K. Ueda, and N. Kamada. 1996. Oncogene. 12:2165-2170). However, the topological relationships that exist in human S phase nuclei between Rad51 foci and damaged chromatin have not been studied thus far. Here, we report on ultraviolet microirradiation experiments of small nuclear areas and on whole cell ultraviolet C (UVC) irradiation experiments performed with a human fibroblast cell line. Before UV irradiation, nuclear DNA was sensitized by the incorporation of halogenated thymidine analogues. These experiments demonstrate the redistribution of Rad51 to the selectively damaged, labeled chromatin. Rad51 recruitment takes place from Rad51 foci scattered throughout the nucleus of nonirradiated cells in S phase. We also demonstrate the preferential association of Rad51 foci with postreplicative chromatin in contrast to replicating chromatin using a double labeling procedure with halogenated thymidine analogues. This finding supports a role of Rad51 in recombinational repair processes of DNA damage present in postreplicative chromatin.  相似文献   

9.
Homologous recombination is essential for genetic exchange, meiosis and error-free repair of double-strand breaks. Central to this process is Rad52, a conserved homo-oligomeric ring-shaped protein, which mediates the exchange of the early recombination factor RPA by Rad51 and promotes strand annealing. Here, we report that Rad52 of Saccharomyces cerevisiae is modified by the ubiquitin-like protein SUMO, primarily at two sites that flank the conserved Rad52 domain. Sumoylation is induced on DNA damage and triggered by Mre11-Rad50-Xrs2 (MRX) complex-governed double-strand breaks (DSBs). Although sumoylation-defective Rad52 is largely recombination proficient, mutant analysis revealed that the SUMO modification sustains Rad52 activity and concomitantly shelters the protein from accelerated proteasomal degradation. Furthermore, our data indicate that sumoylation becomes particularly relevant for those Rad52 molecules that are engaged in recombination.  相似文献   

10.
The fission yeast checkpoint protein Crb2, related to budding yeast Rad9 and human 53BP1 and BRCA1, has been suggested to act as an adapter protein facilitating the phosphorylation of specific substrates by Rad3-Rad26 kinase. To further understand its role in checkpoint signaling, we examined its localization in live cells by using fluorescence microscopy. In response to DNA damage, Crb2 localizes to distinct nuclear foci, which represent sites of DNA double-strand breaks (DSBs). Crb2 colocalizes with Rad22 at persistent foci, suggesting that Crb2 is retained at sites of DNA damage during repair. Damage-induced Crb2 foci still form in cells defective in Rad1, Rad3, and Rad17 complexes, but these foci do not persist as long as in wild-type cells. Our results suggest that Crb2 functions at the sites of DNA damage, and its regulated persistent localization at damage sites may be involved in facilitating DNA repair and/or maintaining the checkpoint arrest while DNA repair is under way.  相似文献   

11.
The repair of chromosomal double-strand breaks (DSBs) is essential to normal cell growth, and homologous recombination is a universal process for DSB repair. We explored DSB repair mechanisms in the yeast Saccharomyces cerevisiae using single-strand oligonucleotides with homology to both sides of a DSB. Oligonucleotide-directed repair occurred exclusively via Rad52- and Rad59-mediated single-strand annealing (SSA). Even the SSA domain of human Rad52 provided partial complementation for a null rad52 mutation. The repair did not involve Rad51-driven strand invasion, and moreover the suppression of strand invasion increased repair with oligonucleotides. A DSB was shown to activate targeting by oligonucleotides homologous to only one side of the break at large distances (at least 20 kb) from the break in a strand-biased manner, suggesting extensive 5' to 3' resection, followed by the restoration of resected DNA to the double-strand state. We conclude that long resected chromosomal DSB ends are repaired by a single-strand DNA oligonucleotide through two rounds of annealing. The repair by single-strand DNA can be conservative and may allow for accurate restoration of chromosomal DNAs with closely spaced DSBs.  相似文献   

12.
In the yeast Saccharomyces cerevisiae, the Rad1–Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1–Rad10 endonuclease cleaves 3′ branches of DNA and aberrant 3′ DNA ends that are refractory to other 3′ processing enzymes. Here we show that yeast strains expressing fluorescently labeled Rad10 protein (Rad10-YFP) form foci in response to double-strand breaks (DSBs) induced by a site-specific restriction enzyme, I-SceI or by ionizing radiation (IR). Additionally, for endonuclease-induced DSBs, Rad10-YFP localization to DSB sites depends on both RAD51 and RAD52, but not MRE11 while IR-induced breaks do not require RAD51. Finally, Rad10-YFP colocalizes with Rad51-CFP and with Rad52-CFP at DSB sites, indicating a temporal overlap of Rad52, Rad51 and Rad10 functions at DSBs. These observations are consistent with a putative role of Rad10 protein in excising overhanging DNA ends after homology searching and refine the potential role(s) of the Rad1–Rad10 complex in DSB repair in yeast.  相似文献   

13.
In response to DNA damage, cells activate a complex protein network designed to sustain genomic integrity. Many of the proteins involved in the network form discrete repair foci, the composition of which is determined by the specific type of damage. Replication protein A (RPA) and the Mre11/Rad50/Nbs1 (MRN) complex both participate in foci and co-localize at certain types of lesions. Following etoposide (ETOP) treatment, cells form foci containing either RPA or the MRN complex, but not both. To investigate this preferential foci formation, we used cell cycle synchronization experimentation. We demonstrate that cells in S phase contain RPA foci but lack phospho-Nbs1 foci. This is consistent with RPA’s role in homologous recombination repair of DNA double-strand breaks (DSBs), the predominant form of repair during S phase. Cells synchronized at G0/G1 phase contain phospho-Nbs1 foci, consistent with the MRN complex involvement in non-homologous end joining, the predominant form of repair in G1 phase. Treatment of cells with the proteasome inhibitor MG132 dramatically reduced the percentage of cells forming phospho-Nbs1 foci but did not alter the percentage of cells containing RPA or phospho-RPA foci. ETOP induced similar amounts of damage in all phases of the cell cycle as measured by the comet assay. These data suggest that in response to DNA DSBs, cell cycle-preferred repair pathways differentially engage RPA and the MRN complex in repair foci.  相似文献   

14.
Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions.  相似文献   

15.
DNA double-strand breaks (DSBs) are critical lesions that can lead to cell death or chromosomal rearrangements. Rad51 is necessary for most mitotic and meiotic DSB repair events, although a number of RAD51-independent pathways exist. Previously, we described DSB repair in rad51Delta yeast diploids that was stimulated by a DNA region termed "facilitator of break-induced replication" (FBI) located approximately 30kb from the site of an HO-induced DSB. Here, we demonstrate that FBI is a large inverted DNA repeat that channels the repair of DSBs into the single-strand annealing-gross chromosomal rearrangements (SSA-GCR) pathway. Further, analysis of DSB repair in rad54Delta cells allowed us to propose that the SSA-GCR repair pathway is suppressed in the presence of Rad51p. Therefore, an additional role of Rad51 might be to protect eukaryotic genomes from instabilities by preventing chromosomal rearrangements.  相似文献   

16.
Homologous recombination (HR) is crucial for maintaining genome integrity by repairing DNA double-strand breaks (DSBs) and rescuing collapsed replication forks. In contrast, uncontrolled HR can lead to chromosome translocations, loss of heterozygosity, and deletion of repetitive sequences. Controlled HR is particularly important for the preservation of repetitive sequences of the ribosomal gene (rDNA) cluster. Here we show that recombinational repair of a DSB in rDNA in Saccharomyces cerevisiae involves the transient relocalization of the lesion to associate with the recombination machinery at an extranucleolar site. The nucleolar exclusion of Rad52 recombination foci entails Mre11 and Smc5-Smc6 complexes and depends on Rad52 SUMO (small ubiquitin-related modifier) modification. Remarkably, mutations that abrogate these activities result in the formation of Rad52 foci within the nucleolus and cause rDNA hyperrecombination and the excision of extrachromosomal rDNA circles. Our study also suggests a key role of sumoylation for nucleolar dynamics, perhaps in the compartmentalization of nuclear activities.  相似文献   

17.
18.
19.
Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells.  相似文献   

20.
Studies of human Nijmegen breakage syndrome (NBS) cells have led to the proposal that the Mre11/Rad50/ NBS1 complex, which is involved in the repair of DNA double-strand breaks (DSBs), might also function in activating the DNA damage checkpoint pathways after DSBs occur. We have studied the role of the homologous budding yeast complex, Mre11/Rad50/Xrs2, in checkpoint activation in response to DSB-inducing agents. Here we show that this complex is required for phosphorylation and activation of the Rad53 and Chk1 checkpoint kinases specifically in response to DSBs. Consistent with defective Rad53 activation, we observed defective cell-cycle delays after induction of DSBs in the absence of Mre11. Furthermore, after gamma-irradiation phosphorylation of Rad9, which is an early event in checkpoint activation, is also dependent on Mre11. All three components of the Mre11/Rad50/Xrs2 complex are required for activation of Rad53, however, the Ku80, Rad51 or Rad52 proteins, which are also involved in DSB repair, are not. Thus, the integrity of the Mre11/Rad50/Xrs2 complex is specifically required for checkpoint activation after the formation of DSBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号