首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria are crucial organelles in cell life serving as a source of energy production and as regulators of Ca(2+) homeostasis, apoptosis, and development. Mitochondria frequently change their shape by fusion and fission, and recent research on these morphological dynamics of mitochondria has highlighted their role in normal cell physiology and disease. In this study, we investigated the effect of high glucose on mitochondrial dynamics in neonatal cardiac myocytes (NCMs). High-glucose treatment of NCMs significantly decreased the level of optical atrophy 1 (OPA1) (mitochondrial fusion-related protein) protein expression. NCMs exhibit two different kinds of mitochondrial structure: round shape around the nuclear area and elongated tubular structures in the pseudopod area. High-glucose-treated NCMs exhibited augmented mitochondrial fragmentation in the pseudopod area. This effect was significantly decreased by OPA1 overexpression. High-glucose exposure also led to increased O-GlcNAcylation of OPA1 in NCMs. GlcNAcase (GCA) overexpression in high-glucose-treated NCMs decreased OPA1 protein O-GlcNAcylation and significantly increased mitochondrial elongation. In addition to the morphological change caused by high glucose, we observed that high glucose decreased mitochondrial membrane potential and complex IV activity and that OPA1 overexpression increased both levels to the control level. These data suggest that decreased OPA1 protein level and increased O-GlcNAcylation of OPA1 protein by high glucose lead to mitochondrial dysfunction by increasing mitochondrial fragmentation, decreasing mitochondrial membrane potential, and attenuating the activity of mitochondrial complex IV, and that overexpression of OPA1 and GCA in cardiac myocytes may help improve the cardiac dysfunction in diabetes.  相似文献   

2.
It has been noted for quite some time that DNA methylation levels decline with age. The significance of this change remained unknown until it became possible to measure methylation status of specific sites on the DNA. It was observed that while the methylation of some sites does indeed decrease with age, that of others increase or remain unchanged. The application of machine learning methods to these quantitative changes in multiple sites, allowed the generation of a highly accurate estimator of age, called the epigenetic clock. The application of this clock on large human epidemiological data sets revealed that discordance between the predicted (epigenetic age) and chronological age is associated with many age-related pathologies, particularly when the former is greater than the latter. The epigenetic clock clearly captures to some degree, biological features that accompany the ageing process. Despite the ever-increasing scope of pathologies that are found to be associated with accelerated epigenetic ageing, the basic principles that underlie the ticking of the clock remain elusive. Here, we describe the known molecular and cellular attributes of the clock and consider their properties, and proffer opinions as to how they may be connected and what might be the underlying mechanism. Emerging from these considerations is the inescapable view that epigenetic ageing begins from very early moments after the embryonic stem cell stage and continues un-interrupted through the entire life-course. This appears to be a consequence of processes that are necessary for the development of the organism from conception and to maintain it thereafter through homeostasis. Hence, while the speed of ageing can, and is affected by external factors, the essence of the ageing process itself is an integral part of, and the consequence of the development of life.Impact statementThe field of epigenetic ageing is relatively new, and the speed of its expansion presents a challenge in keeping abreast with new discoveries and their implications. Several reviews have already addressed the great number of pathologies, health conditions, life-style, and external stressors that are associated with changes to the rate of epigenetic ageing. While these associations highlight and affirm the ability of epigenetic clock to capture biologically meaningful changes associated with age, they do not inform us about the underlying mechanisms. In this very early period since the development of the clock, there have been rather limited experimental research that are aimed at uncovering the mechanism. Hence, the perspective that we proffer is derived from available but nevertheless limited lines of evidence that together provide a seemingly coherent narrative that can be tested. This, we believe would be helpful towards uncovering the workings of the epigenetic clock.  相似文献   

3.
Adenosine tri-phosphate (ATP), the most important energy source for metabolic reactions and pathways, plays a vital role in the growth of industrial strain and the production of target metabolites. In this review, current advances in manipulating ATP in industrial strains, including altering NADH availability, and regulating NADH oxidation pathway, oxygen supply, proton gradient, the electron transfer chain activity and the F0F1-ATPase activity, are summarized and discussed. By applying these strategies, optimal product concentrations, yields and productivity in industrial biotechnology have been achieved. Furthermore, the mechanisms by which ATP extends the substrate utilization spectra and enhances the ability to challenge harsh environmental stress have been elucidated. Finally, three critical issues related to ATP manipulation have been addressed.  相似文献   

4.
Despite significant advances in pharmacological and clinical treatment, heart failure (HF) remains a leading cause of morbidity and mortality worldwide. Many new therapeutic strategies, including cell transplantation, gene delivery, and cytokines or other small molecules, have been explored to treat HF. Recent advancement of our understanding of the molecules that regulate cardiac function uncover many of the therapeutic key molecules to treat HF. Furthermore, a theory of paracrine mechanism, which underlies the beneficial effects of cell therapy, leads us to search novel target molecules for genetic or pharmacological strategy. Gene therapy means delivery of genetic materials into cells to achieve therapeutic effects. Recently, gene transfer technology in the cardiovascular system has been improved and several therapeutic target genes have been started to examine in clinical research, and some of the promising results have been emerged. Among the various bioactive reagents, cytokines such as granulocyte colony-stimulating factor and erythropoietin have been well examined, and a number of clinical trials for acute myocardial infarction and chronic HF have been conducted. Although further research is needed in both preclinical and clinical areas in terms of molecular mechanisms, safety, and efficiency, both gene and cytokine therapy have a great possibility to open the new era of the treatment of HF.  相似文献   

5.
Mechanical forces in the cardiovascular system occur over a wide range of length scales. At the whole organ level, large scale forces drive the beating heart as a synergistic unit. On the microscale, individual cells and their surrounding extracellular matrix (ECM) exhibit dynamic reciprocity, with mechanical feedback moving bidirectionally. Finally, in the nanometer regime, molecular features of cells and the ECM show remarkable sensitivity to mechanical cues. While small, these nanoscale properties are in many cases directly responsible for the mechanosensitive signaling processes that elicit cellular outcomes. Given the inherent challenges in observing, quantifying, and reconstituting this nanoscale environment, it is not surprising that this landscape has been understudied compared to larger length scales. Here, we aim to shine light upon the cardiac nanoenvironment, which plays a crucial role in maintaining physiological homeostasis while also underlying pathological processes. Thus, we will highlight strategies aimed at (1) elucidating the nanoscale components of the cardiac matrix, and (2) designing new materials and biosystems capable of mimicking these features in vitro.  相似文献   

6.
The primary purpose of this paper is to present a basic overview of some "relatively" new ideas related to the regulation of cardiac performance and underlying excitation-contraction (EC) coupling that have yet to be incorporated to textbooks currently used for introductory graduate-level physiology courses. Within the context of cardiac EC coupling, this review incorporates information on microdomains and local control theory, with particular emphasis on the role of Ca(2+) sparks as a key regulatory component of ventricular myocyte contraction dynamics. Recent information pertaining to Ca(2+) release mechanisms specific to the sarcoplasmic reticulum is also presented, as well as the idea of the ryanodine receptor as a macromolecular signaling complex. Because of the potential relationship to maladaptive functional responses under conditions of cardiovascular pathology, the regulatory role of cardiac adrenergic and additional G protein-coupled receptors known to regulate cardiac function is included, and fundamental concepts related to intracellular signaling are discussed. Finally, information on the roles of vascular and cardiac nitric oxide as an important regulator of cardiac performance is included to allow students to begin to think about the ubiquitous role of nitric oxide in the regulation of the cardiovascular system. An important point of emphasis is that whole organ cardiac dynamics can be traced back to the cellular events regulating intracellular Ca(2+) homeostasis and as such provides an important conceptual framework from which the students can begin to think about whole organ physiology in health and disease.  相似文献   

7.
The native form of phospholamban is not known and it is presently under debate whether this protein exists as a monomer or an oligomer in cardiac sarcoplasmic reticulum. The currently accepted model for phospholamban is pentameric, based primarily on its behavior in SDS-polyacrylamide gel electrophoresis. In this study, sucrose density gradient centrifugation and gel filtration chromatography were used to determine the form of phospholamban under nondenaturing conditions. Purified phospholamban or phospholamban present in solubilized cardiac sarcoplasmic reticulum was centrifuged through 5–20% sucrose density gradients in the absence or presence ofn-octylgucoside. The sucrose density gradient fractions were assayed for acid precipitable32P-incorporation in the presence of [-32P]ATP and cAMP-dependent protein kinase catalytic subunit.32P-containing peak fractions were subjected to SDS-polyacrylamide gel electrophoresis and immunoblot analysis, using a phospholamban-polyclonal antibody, to confirm the presence of phospholamban. Purified phosphoblamban migrated with an apparent molecular weight of 25,000 daltons in the sucrose gradients in either the absence or presence of detergent. Phospholamban present in solubilized cardiac sarcoplasmic reticulum migrated with a similar apparent molecular weight when detergent was included in the sucrose gradients. In addition, solubilized cardiac sarcoplasmic reticulum was subjected to gel filtration chromatography in the presence of deoxycholate. Under these conditions phospholamban migrated with an apparent molecular weight of 24,500 daltons. These data suggest that phospholamban prefers an oligomeric assembly and this may be the form present in cardiac sarcoplasmic reticulum membranes.  相似文献   

8.
As a common air pollutant, formaldehyde is widely present in nature, industrial production and consumer products. Endogenous formaldehyde is mainly produced through the oxidative deamination of methylamine catalysed by semicarbazide-sensitive amine oxidase (SSAO) and is ubiquitous in human body fluids, tissues and cells. Vascular endothelial cells and smooth muscle cells are rich in this formaldehyde-producing enzyme and are easily damaged owing to consequent cytotoxicity. Consistent with this, increasing evidence suggests that the cardiovascular system and stages of heart development are also susceptible to the harmful effects of formaldehyde. Exposure to formaldehyde from different sources can induce heart disease such as arrhythmia, myocardial infarction (MI), heart failure (HF) and atherosclerosis (AS). In particular, long-term exposure to high concentrations of formaldehyde in pregnant women is more likely to affect embryonic development and cause heart malformations than long-term exposure to low concentrations of formaldehyde. Specifically, the ability of mouse embryos to effect formaldehyde clearance is far lower than that of the rat embryos, more readily allowing its accumulation. Formaldehyde may also exert toxic effects on heart development by inducing oxidative stress and cardiomyocyte apoptosis. This review focuses on the current progress in understanding the influence and underlying mechanisms of formaldehyde on cardiovascular disease and heart development.  相似文献   

9.
Clonorchiasis caused by Clonorchis sinensis is an important foodborne parasitosis of humans and animals, and is predominantly a hepatobiliary disease. Globally, nearly 35 million people were infected with C. sinensis, with approximately 15 million being in China. Patients would chronically present fatigue, jaundice, abdominal discomfort, along with the increased risk of developing into a form of cholangiocarcinoma that is fatal to humans. Treatment of clonorchiasis by praziquantel has been very successful, but this is dependent on early accurate diagnosis and correct species identification. The present article reviews the current status of knowledge in genomics and functional genomics of C. sinensis, and summarizes the main DNA-based techniques for the specific diagnosis of C. sinensis infection and studies of genetic variation in C. sinensis, and provides perspectives for future studies. The advances in genomics and molecular genetics of C. sinensis shed new sight on our understanding of population structure of C. sinensis as well as the prevention and control of clonorchiasis.  相似文献   

10.
Chronic elevation of circulating ANG II is associated with cardiac remodeling in patients with hypertension and heart failure. The underlying mechanisms, however, are not completely defined. Herein, we studied ANG II-induced molecular and cellular events in the rat heart as well as their links to the redox state. We also addressed the potential contribution of aldosterone (ALDO) on ANG II-induced cardiac remodeling. In ANG II-treated rats, and compared with controls, we found: 1) the expression of proinflammatory/profibrogenic mediators was significantly increased in the perivascular space and at the sites of microscopic injury in both ventricles; 2) macrophages and myofibroblasts were primary repairing cells at these sites, together with increased fibrillar collagen volume; 3) apoptotic macrophages and myofibroblasts were evident at the same sites; 4) NADPH oxidase (gp91phox) was significantly enhanced at these regions and primarily expressed by macrophages, whereas superoxide dismutase and catalase levels remained unchanged; 5) plasma 8-isoprostane levels were significantly increased; and 6) blood pressure was significantly elevated. Losartan treatment completely prevented cardiac oxidative stress as well as molecular/cellular responses and normalized blood pressure. Spironolactone treatment partially suppressed the cardiac inflammatory/fibrogenic responses and redox state. Thus chronic elevation of circulating ANG II is accompanied by a proinflammatory/profibrogenic phenotype involving vascular and myocardial remodeling in both ventricles. Enhanced reactive oxygen species production at these sites and increased plasma 8-isoprostane indicate the involvement of oxidative stress in ANG II-induced cardiac injury. ALDO contributes, in part, to ANG II-induced cardiac molecular and cellular responses.  相似文献   

11.
This paper presents a general review of the distribution of mesophotic coral ecosystems (MCEs) in relationship to geomorphology in US waters. It was specifically concerned with the depth range of 30–100 m, where more than 186,000 km2 of potential seafloor area was identified within the US Gulf of Mexico/Florida, Caribbean, and main Hawaiian Islands. The geomorphology of MCEs was largely inherited from a variety of pre-existing structures of highly diverse origins, which, in combination with environmental stress and physical controls, restrict the distribution of MCEs. Sea-level history, along with depositional and erosional processes, played an integral role in formation of MCE settings. However, mapping the distribution of both potential MCE topography/substrate and existing MCE habitat is only beginning. Mapping techniques pertinent to understanding morphology and MCE distributions are discussed throughout this paper. Future investigations need to consider more cost-effective and remote methods (such as autonomous underwater vehicles (AUVs) and acoustics) in order to assess the distribution and extent of MCE habitat. Some understanding of the history of known MCEs through coring studies would help understand their initiation and response to environmental change over time, essential for assessing how they may be impacted by future environmental change.  相似文献   

12.
13.
14.
The allantoin regulon of Escherichia coli, formed by three operons expressed from promoters allA(P), gcl(P) and allD(P), is involved in the anaerobic utilization of allantoin as nitrogen source. The expression of these operons is under the control of the repressor AllR. The hyperinduction of one of these promoters (allD(P)) by allantoin in an AllR defective mutant suggested the action of another regulator, presumably of activator type. In this work we have identified ybbS (proposed gene name allS), divergently transcribed from allA, as the gene encoding this activator. Analysis of the expression of the three structural operons in DeltaallS mutant showed that the expression from allD(P) was abolished, suggesting that AllS is essential for the expression of the corresponding operon. In a wild-type strain expression of allS takes place mainly anaerobically and is hyperinduced when the nitrogen source limits growth. However, expression of allS is independent of regulators of the Ntr response, NtrC or Nac. Band shift experiments showed that AllR binds to DNA containing the allS-allA intergenic region and the gcl(P) promoter and its binding is abolished by glyoxylate. Both DNA fragments contain a highly conserved inverted repeat, which after site-directed mutagenesis, has been proven to be the AllR-binding site. This site displays similarity with the IclR family recognized consensus. Interaction of AllR with the single operator present in the allS-allA intergenic region prevented binding of RNA polymerase to either of the two divergent promoters. The regulator AllS interacts only with allD(P) even in the absence of allantoin. Analysis of this promoter allowed us to identify an inverted repeat as a motif for AllS binding. We propose a model for the coordinate control of the allantoin regulon by AllR and AllS.  相似文献   

15.
16.
Monophyly of Arthropoda is emphatically supported from both morphological and molecular perspectives. Recent work finds Onychophora rather than Tardigrada to be the closest relatives of arthropods. The status of tardigrades as panarthropods (rather than cycloneuralians) is contentious from the perspective of phylogenomic data. A grade of Cambrian taxa in the arthropod stem group includes gilled lobopodians, dinocaridids (e.g., anomalocaridids), fuxianhuiids and canadaspidids that inform on character acquisition between Onychophora and the arthropod crown group. A sister group relationship between Crustacea (itself likely paraphyletic) and Hexapoda is retrieved by diverse kinds of molecular data and is well supported by neuroanatomy. This clade, Tetraconata, can be dated to the early Cambrian by crown group-type mandibles. The rival Atelocerata hypothesis (Myriapoda + Hexapoda) has no molecular support. The basal node in the arthropod crown group is embroiled in a controversy over whether myriapods unite with chelicerates (Paradoxopoda or Myriochelata) or with crustaceans and hexapods (Mandibulata). Both groups find some molecular and morphological support, though Mandibulata is presently the stronger morphological hypothesis. Either hypothesis forces an unsampled ghost lineage for Myriapoda from the Cambrian to the mid Silurian.  相似文献   

17.
The ability to store energy in the form of energy-dense TAG (triacylglycerol) and to mobilize these stores rapidly during times of low carbohydrate availability (fasting or famine) or during heightened metabolic demand (exercise or cold-stress) is a highly conserved process essential for survival. Today, in the presence of nutrient excess and sedentary lifestyles, the regulation of this pathway is viewed as an important therapeutic target for disease prevention, as elevated circulating fatty acids in obesity contribute to many aspects of the metabolic syndrome including hepatic steatosis, atherosclerosis and insulin resistance. In the present review, we discuss the metabolic regulation and function of TAG lipases with a focus on HSL (hormone-sensitive lipase), ATGL (adipose triacylglycerol lipase) and newly identified members of the lipolytic proteome.  相似文献   

18.
Determining the biological function of a myriad of genes, and understanding how they interact to yield a living cell, is the major challenge of the post genome-sequencing era. The complexity of biological systems is such that this cannot be envisaged without the help of powerful computer systems capable of representing and analysing the intricate networks of physical and functional interactions between the different cellular components. In this review we try to provide the reader with an appreciation of where we stand in this regard. We discuss some of the inherent problems in describing the different facets of biological function, give an overview of how information on function is currently represented in the major biological databases, and describe different systems for organising and categorising the functions of gene products. In a second part, we present a new general data model, currently under development, which describes information on molecular function and cellular processes in a rigorous manner. The model is capable of representing a large variety of biochemical processes, including metabolic pathways, regulation of gene expression and signal transduction. It also incorporates taxonomies for categorising molecular entities, interactions and processes, and it offers means of viewing the information at different levels of resolution, and dealing with incomplete knowledge. The data model has been implemented in the database on protein function and cellular processes 'aMAZE' (http://www.ebi.ac.uk/research/pfbp/), which presently covers metabolic pathways and their regulation. Several tools for querying, displaying, and performing analyses on such pathways are briefly described in order to illustrate the practical applications enabled by the model.  相似文献   

19.
Myocardial development is regulated by an elegantly choreographed ensemble of signaling events mediated by a multitude of intermediates that take a variety of forms. Cellular differentiation and maturation are a subset of vertically integrated processes that extend over several spatial and temporal scales to create a well-defined collective of cells that are able to function cooperatively and reliably at the organ level. Early efforts to understand the molecular mechanisms of cardiomyocyte fate determination focused primarily on genetic and chemical mediators of this process. However, increasing evidence suggests that mechanical interactions between the extracellular matrix (ECM) and cell surface receptors as well as physical interactions between neighboring cells play important roles in regulating the signaling pathways controlling the developmental processes of the heart. Interdisciplinary efforts have made it apparent that the influence of the ECM on cellular behavior occurs through a multitude of physical mechanisms, such as ECM boundary conditions, elasticity, and the propagation of mechanical signals to intracellular compartments, such as the nucleus. In addition to experimental studies, a number of mathematical models have been developed that attempt to capture the interplay between cells and their local microenvironment and the influence these interactions have on cellular self-assembly and functional behavior. Nevertheless, many questions remain unanswered concerning the mechanism through which physical interactions between cardiomyocytes and their environment are translated into biochemical cellular responses and how these signaling modalities can be utilized in vitro to fabricate myocardial tissue constructs from stem cell-derived cardiomyocytes that more faithfully represent their in vivo counterpart. These studies represent a broad effort to characterize biological form as a conduit for information transfer that spans the nanometer length scale of proteins to the meter length scale of the patient and may yield new insights into the contribution of mechanotransduction into heart development and disease.  相似文献   

20.
Evolutionary morphologists and physiologists have long recognized the phylogenetic significance of the ectothermic sauropsids. Sauropids have been classically considered to bridge between early tetrapods, ectotherms, and the evolution of endotherms. This transition has been associated with many modifications in cardiovascular form and function, which have changed dramatically during the course of vertebrate evolution. Most cardiovascular studies have focused upon adults, leaving the development of this critical system largely unexplored. In this essay, we attempt a synthesis of sauropsid cardiovascular development based on the limited literature and indicate fertile regions for future studies. Early morphological cardiovascular development, i.e., the basic formation of the tube heart and the major pulmonary and systemic vessels, is similar across tetrapods. Subsequent cardiac chamber development, however, varies considerably between developing chelonians, squamates, crocodilians, and birds, reflected in the diversity of adult ventricular structure across these taxa. The details of how these differences in morphology develop, including the molecular regulation of cardiac and vascular growth and differentiation, are still poorly understood. In terms of the functional maturation of the cardiovascular system, reflected in physiological mechanisms for regulating heart rate and cardiac output, recent work has illustrated that changes during ontogeny in parameters such as heart rate and arterial blood pressure are somewhat species‐dependent. However, there are commonalities, such as a β‐adrenergic receptor tone on the embryonic heart appearing prior to 60% of development. Differential gross morphological responses to environmental stressors (oxygen, hydration, temperature) have been investigated interspecifically, revealing that cardiac development is relatively plastic, especially, with respect to change in heart growth. Collectively, the data assembled here reflects the current limited morphological and physiological understanding of cardiovascular development in sauropsids and identifies key areas for future studies of this diverse vertebrate lineage. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号