首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of a silkworm eclosion hormone gene in yeast   总被引:1,自引:0,他引:1  
Recombinant silkworm eclosion hormone was produced for the first time in yeast which was transformed with a shuttle plasmid containing a construct coding a signal peptide and the mature sequence of the silkworm eclosion hormone. Successfully transformed yeast processed recombinant silkworm eclosion hormone I (EH-I) and transported it to periplasm at the concentration of 60 micrograms per liter of culture. The biological activity of the purified recombinant silkworm eclosion hormone exhibited the ED50 value of 0.2 ng which is the same as that of the authentic hormone isolated from the silkworm brain.  相似文献   

2.
Inka cells of insect epitracheal glands (EGs) secrete preecdysis and ecdysis-triggering hormones (PETH and ETH) at the end of each developmental stage. Both peptides act in the central nervous system to evoke the ecdysis behavioral sequence, a stereotype behavior during which old cuticle is shed. Secretion of ETH is stimulated by a brain neuropeptide, eclosion hormone (EH). EH evokes accumulation of cGMP followed by release of ETH from Inka cells, and exogenous cGMP evokes secretion of ETH. The secretory responses to EH and cGMP are inhibited by the broad-spectrum kinase inhibitor staurosporine, and the response to EH is potentiated by the phosphatase inhibitor calyculin A. Staurosporine did not inhibit EH-evoked accumulation of cGMP. Changes in cytoplasmic Ca2+ in Inka cells during EH signaling were monitored via fluorescence ratioing with fura-2-loaded EGs. Cytoplasmic Ca2+ increases within 30-120 s after addition of EH to EGs, and it remains elevated for at least 10 min, corresponding with the time course of secretion. Secretion is increased in dose-dependent manner by the Ca2+-ATPase inhibitor thapsigargin, a treatment that does not elevate glandular cGMP above basal levels. The secretory response to EH is partially inhibited in glands loaded with EGTA, while cGMP levels are unaffected. These findings suggest that EH activates second messenger cascades leading to cGMP accumulation and Ca2+ mobilization and/or influx and that both pathways are required for a full secretory response. cGMP activates a staurosporine-inhibitable protein kinase. We propose that Ca2+ acts via a parallel cascade with a time course that is similar to that for cGMP activation of a cGMP-dependent protein kinase.  相似文献   

3.
While most receptor tyrosine kinases signal by recruiting SH2 proteins directly to phosphorylation sites on their plasma membrane receptor, the insulin receptor phosphorylates intermediary IRS proteins that are distributed between the cytoplasm and a state of loose association with intracellular membranes. To determine the importance of this distribution to IRS-1-mediated signaling, we constructed a prenylated, constitutively membrane-bound IRS-1 by adding the COOH-terminal 9 amino acids from p21(ras), including the CAAX motif, to IRS-1 (IRS-CAAX) and analyzed its function in 32D cells expressing the insulin receptor. IRS-CAAX migrated more slowly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than did IRS-1 and demonstrated increased levels of serine/threonine phosphorylation. Insulin-stimulated tyrosyl phosphorylation of IRS-CAAX was slightly decreased, while IRS-CAAX-mediated phosphatidylinositol 3'-kinase (PI3'-kinase) binding and activation were decreased by approximately 75% compared to those for wild-type IRS-1. Similarly, expression of IRS-CAAX desensitized insulin-stimulated [(3)H]thymidine incorporation into DNA by about an order of magnitude compared to IRS-1. By contrast, IRS-CAAX-expressing cells demonstrated increased signaling by mitogen-activated protein kinase, Akt, and p70(S6) kinase in response to insulin. Hence, tight association with the membrane increased IRS-1 serine phosphorylation and reduced coupling between the insulin receptor, PI3'-kinase, and proliferative signaling while enhancing other signaling pathways. Thus, the correct distribution of IRS-1 between the cytoplasm and membrane compartments is critical to the normal balance in the network of insulin signaling.  相似文献   

4.
The relationship between the ecdysteroid titre and eclosion hormone was explored for the pupal and adult ecdyses of Manduca sexta. Ecdysteroid treatment late during either moult caused a dosedependant delay in the time of ecdysis. Sensitivity to exogenous steroid treatment dropped off as the respective moults neared completion and in both cases coincided with the time of the low point in the endogenous ecdysteroid titre. It was concluded that an ecdysteroid decline is a normal prerequisite for the ecdyses of both stages. The steroid drop is important for two aspects of the eclosion hormone system: it causes target tissues to become sensitive to the peptide and it is a prerequisite for the subsequent release of eclosion hormone itself. Thus, the dual action of the declining ecdysteroid titre insures that when eclosion hormone is released, the tissues will be competent to respond to it.  相似文献   

5.
6.
Cellular models for the study of the neuropeptide melanin-concentrating hormone (MCH) have become indispensable tools for pharmacological profiling and signaling analysis of MCH and its synthetic analogues. Although expression of MCH receptors is most abundant in the brain, MCH-R1 is also found in different peripheral tissues. Therefore, not only cell lines derived from nervous tissue but also from peripheral tissues that naturally express MCH receptors have been used to study receptor signaling and regulation. For screening of novel compounds, however, heterologous expression of MCH-R1 or MCH-R2 genes in HEK293, Chinese hamster ovary, COS-7, or 3T3-L1 cells, or amplified MCH-R1 expression/signaling in IRM23 cells transfected with the Gq protein gene are the preferred tools because of more distinct pharmacological effects induced by MCH, which include inhibition of cAMP formation, stimulation of inositol triphosphate production, increase in intracellular free Ca2+ and/or activation of mitogen-activated protein kinases. Most of the published data originate from this type of model system, whereas data based on studies with cell lines endogenously expressing MCH receptors are more limited. This review presents an update on the different cellular models currently used for the analysis of MCH receptor interaction and signaling.  相似文献   

7.
Cellular models for the study of the neuropeptide melanin-concentrating hormone (MCH) have become indispensable tools for pharmacological profiling and signaling analysis of MCH and its synthetic analogues. Although expression of MCH receptors is most abundant in the brain, MCH-R(1) is also found in different peripheral tissues. Therefore, not only cell lines derived from nervous tissue but also from peripheral tissues that naturally express MCH receptors have been used to study receptor signaling and regulation. For screening of novel compounds, however, heterologous expression of MCH-R(1) or MCH-R(2) genes in HEK293, Chinese hamster ovary, COS-7, or 3T3-L1 cells, or amplified MCH-R(1) expression/signaling in IRM23 cells transfected with the G(q) protein gene are the preferred tools because of more distinct pharmacological effects induced by MCH, which include inhibition of cAMP formation, stimulation of inositol triphosphate production, increase in intracellular free Ca(2+) and/or activation of mitogen-activated protein kinases. Most of the published data originate from this type of model system, whereas data based on studies with cell lines endogenously expressing MCH receptors are more limited. This review presents an update on the different cellular models currently used for the analysis of MCH receptor interaction and signaling.  相似文献   

8.
Abdominal aortic aneurysms (AAAs) are highly lethal cardiovascular diseases without effective medications. However, the molecular and signaling mechanisms remain unclear. A series of pathological cellular processes have been shown to contribute to AAA formation, including vascular extracellular matrix remodeling, inflammatory and immune responses, oxidative stress, and dysfunction of vascular smooth muscle cells. Each cellular process involves complex cellular signaling, such as NF-κB, MAPK, TGFβ, Notch and inflammasome signaling. In this review, we discuss how cellular signaling networks function in various cellular processes during the pathogenesis and progression of AAA. Understanding the interaction of cellular signaling networks with AAA pathogenesis as well as the crosstalk of different signaling pathways is essential for the development of novel therapeutic approaches to and personalized treatments of AAA diseases.  相似文献   

9.
This monograph is dedicated to the memory of Dr. Jared James Grantham (1936–2016), a wonderful man, a compassionate physician, a passionate researcher, and an exceptional scientist. Without his vision, achievements and impact on countless collaborators and disciples, the field of Polycystic Kidney Disease would not be where it is today. His intellect, tenacity, modesty and kindness continue to be an inspiration to all.  相似文献   

10.
Investigations performed on adult insects revealed that putative components of the central pacemaker, the protein Period (PER) and the pigment-dispersing hormone (PDH), are immunocytochemically detectable in discrete sets of brain neurons throughout the class of Insecta, represented by a bristletail, mayfly, damselfly, 2 locust species, stonefly, 2 bug species, goldsmith beetle, caddisfly, honeybee, and 2 blowfly species. The PER-positive cells are localized in the frontal protocerebrum and in most species also in the optic lobes, which are their only location in damselfly and goldsmith beetle. Additional PER-positive cells occur in a few species either in the deuto- and tritocerebrum or in the suboesophageal ganglion. The PER staining was always confined to the cytoplasm. The PDH immunoreactivity consistently occurs in a cluster of perikarya located frontoventrally at the proximal edge of the medulla. The mayfly and both locust species possess additional PDH neurons in 2 posterior cell clusters at the proximal edge of the medulla, and mayfly, waterstrider, and 1 of the blowfly species in the central brain. PDH-positive fibers form a fanlike arrangement over the frontal side of the medulla. Two or just 1 bundle of PDH-positive fibers run from the optic lobe to the protocerebrum, with collaterals passing over to the contralateral optic lobe. Antisera to the prothoracicotropic (PTTH) and the eclosion (EH) hormones, which in some insects regulate the molting and ecdysis rhythms, respectively, typically react with a few neurons in the frontal protocerebrum. However, the PTTH-positive neurons of the mayfly and the damselfly and the EH-positive neurons of the caddisfly are located in the suboesophageal ganglion. No PTTH-like antigen was detected in locusts, and no EH-like antigens were detected in the damselfly, stonefly, locusts, and the honeybee. There are no signs of co-localization of the PER-, PDH-, PTTH-, and EH-like antigens in identical neurons.  相似文献   

11.
Each larval moult in Manduca sexta consists of an identical series of developmental and behavioural events leading up to ecdysis. Injections of eclosion hormone into staged larvae in any instar resulted in the premature elicitation of the larval pre-ecdysis behaviour, comprising a rhythmic sequence of muscle contractions, followed by the larval ecdysis behaviour.A marked depletion of eclosion hormone stores form the ventral chain of ganglia coincided with each larval ecdysis and in the moult to the fifth instar, eclosion hormone activity appeared in the blood at the onset of the pre-ecdysis behaviour.Responsiveness to eclosion hormone for pre-ecdysis and ecdysis behaviour developed about 12 and 6 hr before normal ecdysis, respectively. Elicitation of ecdysis behaviour by exogenous hormone inhibited both subsequent behavioural responses to eclosion hormone and endogenous hormonal release.In conclusion, the behavioural programme involved in each larval ecdysis appears to be controlled by the eclosion hormone.  相似文献   

12.
13.
14.
15.
16.
Eclosion hormone is an insect neuropeptide that consists of 62 amino acid residues including three disulfide bonds. We have previously reported its hypothetical 3D structure consisting mainly of three alpha-helices. In this paper, we report the effects of chaperone proteins on the refolding of denatured eclosion hormone in a redox buffer containing reduced and oxidized glutathione. Urea-denatured eclosion hormone was spontaneously reactivated within 1 min with a yield of more than 90%, while beta-mercaptoethanol-denatured eclosion hormone was reactivated in a few minutes with a yield of 75%. Under the same experimental conditions, eclosion hormone treated with beta-mercaptoethanol and urea was reactivated slowly with a yield of 47% over a period of 2 h. Protein disulfide isomerase, a eucaryotic chaperone protein, markedly increased the reactivation yield and rate of the totally denatured hormone. GroE oligomers slightly improved the reactivation yield but peptidyl prolyl isomerase had no influence on yield or rate. We propose that the folding pathway of eclosion hormone involves at least two rate-limiting steps, and that protein disulfide isomerase is likely to be involved in the folding in insect neuronal cells.  相似文献   

17.
Recent studies suggest that hormones act through a web of interacting responses rather than through isolated linear pathways. This signal integration architecture may be one mechanism for increasing the specificity of outcomes in different cellular contexts. Several common themes for cross-regulation between pathways can be observed. Here, we propose a classification scheme for different levels of signaling pathway cross-regulation. This scheme is based on which parts of the individual pathways are acting as information conduits between pathways. Examples from the recent plant hormone biology literature are used to illustrate the different modes of interaction. K. T. Kuppusamy and C. L. Walcher—co-first-authors.  相似文献   

18.
Metamorphosis in the moth Manduca sexta culminates with the secretion of the peptide eclosion hormone (EH), which triggers the stereotyped behavior of adult emergence (eclosion) from the pupal cuticle. In restrained but spontaneously behaving animals, the release of EH occurred shortly before the onset of subjective night (Fig. 3) and coincided with a depletion of EH from the neurohemal organs of the brain, the corpora cardiaca-corpora allata complex (CC-CA; Fig. 4). EH is produced by neurons within a bilaterally paired group of brain neurosecretory cells (Group Ia) which project to the CC-CA via the nervi corporis cardiaci- 1 + 2 (NCC-1 + 2; Fig. 1). Electrical stimulation of the NCC-1 + 2 caused a marked increase in the levels of EH secreted from isolated CC-CA (Fig. 2), while stimulation of the other nerves innervating the neurohemal organs did not. Electrical activity in the NCC-1 + 2 paralleled that of the cerebral neurosecretory cells (Fig. 1). Chronic extracellular recordings revealed a sudden increase in the tonic firing of several units within this nerve approximately 2 to 3 h before normal eclosion (Fig. 5), coincident with the release of EH bioactivity from the CC-CA (Fig. 6). The Group Ia neurons were electrically inactive on the day before eclosion (Day-1), but on the day of eclosion (Day 0) a subgroup of these cells exhibited both enhanced synaptic input and elevated rates of tonic firing during the normal time of EH release (Fig. 7). No significant differences in resting membrane potential or spike waveform characteristics were detected among the various subsets of Group Ia cells on either Day-1 or Day 0, while a significant increase in the resting input resistance was seen in the active subgroup on Day 0 (Fig. 8). This increase may be due to the regulatory effects of the steroid 20-hydroxyecdysone, which inhibits the release of EH and may act by preventing the synaptic activation of the EH neurons until the final day of adult development.  相似文献   

19.
20.
The juvenile hormones of insects regulate an unusually large diversity of processes during postembryonic development and adult reproduction. It is a long-standing puzzle in insect developmental biology and physiology how one hormone can have such diverse effects. The search for molecular mechanisms of juvenile hormone action has been guided by classical models for hormone-receptor interaction. Yet, despite substantial effort, the search for a juvenile hormone receptor has been frustrating and has yielded limited results. We note here that a number of lipid-soluble signaling molecules in vertebrates, invertebrates and plants show curious similarities to the properties of juvenile hormones of insects. Until now, these signaling molecules have been thought of as uniquely evolved mechanisms that perform specialized regulatory functions in the taxon where they were discovered. We show that this array of lipid signaling molecules share interesting properties and suggest that they constitute a large set of signal control and transduction mechanisms that include, but range far beyond, the classical steroid hormone signaling mechanism. Juvenile hormone is the insect representative of this widespread and diverse system of lipid signaling molecules that regulate protein activity in a variety of ways. We propose a synthetic perspective for understanding juvenile hormone action in light of other lipid signaling systems and suggest that lipid activation of proteins has evolved to modulate existing signal activation and transduction mechanisms in animals and plants. Since small lipids can be inserted into many different pathways, lipid-activated proteins have evolved to play a great diversity of roles in physiology and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号