首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
Although 5th (last) instar parasitized Manduca sexta larvae undergo developmental arrest and do not wander, they exhibit a small hemolymph ecdysteroid peak (300-400pg/&mgr;l) which begins one day prior to the parasitoid's molt to the 3rd (last) instar and concomitant emergence from the host. Ecdysteroids present in this peak were 20-hydroxyecdysone, 20,26-dihydroxyecdysone and one or more very polar ecdysteroids, as well as small amounts of 26-hydroxyecdysone and ecdysone. In parasitized day-1 and -2 5th instars ligated just behind the 1st abdominal proleg, hemolymph ecdysteroid levels increased in both anterior and posterior portions (100-500pg/&mgr;l), while in unparasitized larvae, hormone levels only increased in the anterior portion (100-350pg/&mgr;l). Thus, the ecdysteroid peak observed in host 5th instars was probably produced, at least in part, by the parasitoids. It may serve to promote Cotesia congregata's molt from the second to the third instar and/or to facilitate parasitoid emergence from the host. In parasitized day-1 and -2 5th instars ligated between the last thoracic and 1st abdominal segments, hemolymph ecdysteroid titers reached much higher levels (500-3500pg/&mgr;l) in the anterior portion (no parasitoids present) than in the posterior portion (150-450pg/&mgr;l). Therefore, it appears that the parasitoid's regulation of hemolymph ecdysteroid titers occurs at two levels. First, parasitization neutralizes the host's ability to maintain its normal hemolymph ecdysteroid levels. Second, in a separate action, the parasitoid manipulates the ecdysteroid-producing machinery so that hemolymph levels are maintained at the 200-400pg/&mgr;l characteristic of day 3-4 hosts. This is the first report of a parasitoid's ability to interfere with the normal inhibitory mechanisms which prevent prothoracic gland production of ecdysteroid at inappropriate periods of insect growth and development.  相似文献   

2.
Euplectrus comstockii Howard (Hymenoptera: Eulophidae), is an ectoparasitic, gregarious wasp which parasitizes the larval stage of several important lepidopteran pests. Parasitization of both natural and unnatural hosts prevents molting in the parasitized instar. Here we report the effect of wasp venom on the European corn borer (unnatural host), an important pest of corn and other vegetables. Venom collected from venom glands of adultE. comstockii, when injected intoO. nubilalis 5th instars, inhibited the growth rate, development and molting of the injected larvae. The observed effect on molting was dose and age dependent. When 3rd, 4th and 5th instarO. nubilalis were envenomated by adult wasps, the larvae also were developmentally arrested and failed to undergo a molt. However, 3rd and 4th instars underwent apolysis (separation of the epidermis from the old cuticle) and produced new cuticle. Fifth instars did not. A premolt hemolymph ecdysteroid peak was not observed in these experimental 5th instars, but injections of 20-hydroxy-ecdysone induced apolysis and new cuticle formation. Envenomated 4th instars (on becoming pharate 5th instars) exhibited a premolt hemolymph ecdysteroid peak. HPLC/RIA revealed that 20-hydroxyecdysone was present in the hemolymph of these pharate 5th instars. Thus, in the European corn borer, the mode of action of the venom depended upon the instar parasitized. Our results support the presence of a venom component(s) that, in 4th instar hosts, inhibited ecdysis, but did not prevent hemolymph ecdysteroid levels from increasing sufficiently to stimulate apolysis. In 5th instars, the same, or perhaps, a different component(s) ofE. comstockii venom prevented the synthesis/release of ecdysteroid by inhibiting a previously unknown molt-regulating physiological event that occurs between days 3 and 4 of the instar. Deceased  相似文献   

3.
The prothoracic glands of the early last-instar larva of Mamestra brassicae (day 0–3) were found previously to be insensitive to stimulation by juvenile hormone, whereas those later in the instar (from day 4 on) were activated by this hormone. When neck-ligatured young larvae (day-1, day-2 and day-3) were given juvenile hormone 5–10 days after ligation, pupation was induced. Similarly, juvenile hormone induced pupation of isolated abdomens which contained prothoracic glands taken from neck-ligatured day-3 larvae 5 days after ligation. If the glands were exposed to prothoracicotropic hormone (PTTH) from implanted brains before they were transplanted to isolated abdomens, their sensitivity to juvenile hormone activation was enhanced. Ecdysone but not 20-hydroxyecdysone given every 3 hr for 12 hr also slightly enhanced sensitivity. These results suggest that prothoracic glands from either day-1, day-2 or day-3 larvae can slowly acquire a sensitivity to juvenile hormone activation by prolonged incubation in the absence of factors from the head. The acquisition of sensitivity occurs more rapidly in the presence of both a factor from the brain, presumably PTTH, and ecdysone released from the prothoracic glands themselves.  相似文献   

4.
Fenoxycarb application at 48 h (day 2) of the 5th instar of Bombyx mori induced permanent larvae with prothoracic glands (PGs) exhibiting weak ecdysteroidogenic activity. Although glands from control and fenoxycarb-treated larvae exhibited similar responses to dibutyl cAMP and forskolin on day 2, forskolin could not stimulate ecdysteroid secretion from PGs of fenoxycarb-treated larvae on day 3. Glands from control larvae incubated with cholera toxin (CTX) on day 3 had increased cAMP content and enhanced ecdysteroid secretion. Cholera toxin did not stimulate ecdysteroid secretion and marginally increased cAMP content in day 3 PGs of fenoxycarb-treated larvae. After application of fenoxycarb on day 2, crude brain extracts (cBRAIN) could not increase the glandular cAMP content throughout the rest of the 5th instar of the treated larvae. Fenoxycarb did not affect the basal or cBRAIN-stimulated cAMP accumulation in control PGs on day 2 and day 3 in vitro. Application of fenoxycarb on day 2 did not affect the recombinant PTTH (rPTTH)-stimulated ecdysteroid secretion on day 3, but reduced the cBRAIN-stimulated ecdysteroid secretion on day 3 to levels similar to that of rPTTH. The combined results suggest that the cAMP signalling cascade in the PGs of B. mori becomes nonfunctional after fenoxycarb application on day 2 of the 5th instar.  相似文献   

5.
The increase in the juvenile hormone (JH) III titer in the hemolymph of Lymantria dispar larvae that were parasitized by the endoparasitoid braconid, Glyptapanteles liparidis, during the host's premolt to third instar, coincided with the molt of the parasitoid larvae to the second instar between day 5 and 7 of the fourth host instar. It reached a maximum mean value of 89 pmol/ml on day 7 of the fifth instar while it remained below 1 pmol/ml in unparasitized larvae. Only newly molted fifth instar hosts showed a low JH III titer similar to that of the unparasitized larvae. JH II, which is the predominant JH homologue in unparasitized gypsy moth larvae, also increased relative to controls in the last two samples (days 7 and 9) from parasitized fourth and fifth instars. Compared to unparasitized larvae, a generally reduced activity of JH esterase (JHE) was found in parasitized larvae throughout both larval stages. The reduction in enzyme activity at the beginning and at the end of each instar, when the JHE activity in unparasitized larvae was high, may be in part responsible for the increased JH II and JH III titers in parasitized larvae. Ester hydrolysis was the only pathway of JH metabolism in the hemolymph of unparasitized and parasitized gypsy moth larvae as detected by chromatographic assays. © 1996 Wiley-Liss, Inc.  相似文献   

6.
The location and number of brain neurosecretory cells were studied in the larval southwestern corn borer. One posterior, two median and two lateral groups of paraldehyde-fuchsin positive cells were found in each cerebral hemisphere.Implantation of brain parts containing different groups of neurosecretory cells revealed that the median neurosecretory cells contained higher ecdysiotropic activity than the other cell groups. In vitro culture of ecdysial gland with brain or brain-parts extract showed also that the median neurosecretory cells contained much higher ecdysiotropic activity than other neurosecretory cells. To estimate the ecdysiotropic activity of pre-diapausing 6th instar larvae, their brain or brain extract was incubated in culture medium containing an ecdysial gland from a day-4 last-instar non-diapausing larva. Data showed that the ecdysiotropic activity in the pre-diapausing larvae was far lower than in non-diapausing and diapausing larvae.  相似文献   

7.
When insect larvae have fully grown, prothoracicotropic hormone (PTTH) is released from the brain, triggering the initiation of metamorphic development through stimulation of ecdysteroid secretion by the prothoracic glands. The present study analyzes the mechanism that regulates the occurrence of this PTTH surge. In the silkworm Bombyx mori, the PTTH surge occurs on day 6 of the fifth instar and is preceded by a small rise in hemolymph ecdysteroid titer, which occurs late on day 5. We therefore hypothesized that this rise of ecdysteroid titer is involved in the induction of the PTTH surge. To test this hypothesis, two experiments were conducted. First, a small amount of 20-hydroxyecdysone was injected on day 4, two days before the expected day of the PTTH surge, to simulate the small rise in hemolymph ecdysteroid titer on day 5. This injection led to a precocious surge of PTTH the next day. Next, the hemolymph ecdysteroid titer on day 5 was artificially lowered by injecting ecdysteroid-22-oxidase, which inactivates 20-hydroxyecdysone. After this treatment, the PTTH surge did not occur on day 6 in 80% of the animals. These results indicate that a small rise of the hemolymph ecdysteroid titer plays a critical role in the induction of the PTTH surge. Since basal ecdysteroidogenic activity of the prothoracic glands increases with larval growth, a circulating level of ecdysteroids may convey information about larval maturity to the brain, to coordinate larval growth and metamorphosis. This is the first report in invertebrates to demonstrate positive feedback regulation of the surge of a tropic hormone by a downstream steroid hormone.  相似文献   

8.
Regulation of ecdysteroid production in lepidopteran prepupae was studied using a parasitic wasp (C. near curvimaculatus) which specifically suppresses host prepupal ecdysteroid production after the induction of precocious host metamorphosis. At the developmental stage at which the hemolymph of the unparasitized metamorphosing host has its maximum titer of prepupal ecdysteroids, the hemolymph of 4th instar "truly parasitized" hosts (hosts with a surviving endoparasite) had a strongly reduced ecdysteroid titer. However, during the photophase about 12 h later, just prior to emergence of the parasite larva, an ecdysteroid peak was observed in the host hemolymph. Fourth instar pseudoparasitized prepupal hosts (in which the endoparasite was not present or died early in development) exhibited a sustained suppression in the hemolymph ecdysteroid titer. Small 5th instar pseudoparasitized hosts, which normally would molt to a 6th instar prior to metamorphosis, but which precociously attained the prepupal stage, also had a strongly reduced ecdysteroid titer. The late increase observed in truly parasitized hosts could be completely prevented by surgical removal of the parasite 24 h earlier, resulting in a titer similar to that in pseudoparasitized hosts. HPLC analysis of ecdysteroids in normal, truly parasitized, and 4th or 5th instar pseudoparasitized prepupae showed that both ecdysone and 20-OH ecdysone* were suppressed in truly and pseudoparasitized prepupae, with ecdysteroid levels being lowest in pseudoparasitized hosts. These data, and those of Brown and Reed-Larsen (Biol Contr 1, 136 [1992]), showing endoparasite secretion of ecdysteroids just prior to its emergence from the host, strongly indicate that: (1) the prepupal peak in truly parasitized hosts originates from the endoparasite, and (2) the low level of ecdysteroids in pseudoparasitized hosts results from the host's intrinsic inability to express a normal level of prepupal ecdysteroid titer. While precocious 4th or 5th instar prepupae of similar size had similarly suppressed ecdysteroid titers, smaller 4th instar prepupae had a lower ecdysteroid titer than larger, precocious 5th instar prepupae. Rare 5th instar pseudoparasitized prepupae that were of nearly normal size showed a prepupal ecdysteroid titer distinctly greater than those of the usual smaller, precocious 5th instar prepupae. The data suggest that the competence of the host to express a normal hemolymph titer of prepupal ecdysteroids is more closely correlated with the size of the prepupae than with the instar attained.  相似文献   

9.
Cytosolic free calcium was measured in individual prothoracic gland cells of Manduca larvae with Fura-2. During the last larval instar there was no correlation between intracellular calcium concentration and ecdysteroid secretion by the glands. The addition of prothoracicotropic hormone (PTTH) from brains of Manduca larvae to prothoracic glands in vitro resulted in a significant increase in the calcium concentration of the gland cells. The effect of PTTH was inhibited by the inorganic calcium channel antagonists, cadmium, lanthanum and nickel, and by the antagonist of T-type calcium channels, amiloride, whereas all the other antagonists tested failed to block the action of PTTH. TMB-8, an inhibitor of intracellular calcium mobilization, did not reduce the PTTH-induced rise in calcium, which suggests that IP(3)-dependent intracellular calcium stores are not involved in the calcium-mediated stimulation of ecdysteroid synthesis. Moreover, PTTH is thought to increase intracellular calcium in prothoracic glands of Manduca by influencing calcium channels in the plasma membrane.  相似文献   

10.
The last larval moult of Galleria mellonella is induced by an elevation of ecdysteroid titre to more than 200 ng/g. After ecdysis the titre remains very low until 70 hr of the last-instar when a slight elevation in ecdysteroid concentration initiates the onset of metamorphosis. An ecdysteroid peak (275 ng/g), which occurs between 108 and 144 hr, is associated with wandering and cocoon spinning. Pupal ecdysis follows about 20 hr after a large ecdysteroid peak (780 ng/g) with a maximum in slowly-mobile prepupae (160 hr of the last larval instar). The ecdysteroid decrease between the two peaks coincides with the period when the larvae exposed to unfavourable conditions enter diapause. The pupal-adult moult is initiated by a high ecdysteroid peak (1500–2500 ng/g) in early pupae and imaginal cuticle is secreted in response to a smaller peak (ca. 500 ng/g) in the middle of pupal instar.Until early pupae, the ecdysteroid content is regulated by the prothoracic glands. In decapitated larvae the glands become spontaneously active after 30–40 days and the body titre of ecdysteroids undergoes an increase; the glands revert to inactivity when the insects accomplish secretion of pupal cuticle. A similar ecdysteroid increase occurs within 10 days when the decapitated larvae receive implants of brains releasing the prothoracicotropic neurohormone (PTTH). In either case, the pupation-inducing increase of ecdysteroids is 3 times higher than the large ecdysteroid peak in the last-instar of intact larvae. This indicates that the function of prothoracic glands in intact larvae is restrained, probably by the juvenile hormone (JH). Exogenous JH suppresses the spontaneous activation of the prothoracic glands in decapitated larvae and reduces the ecdysteroid concentration in those larvae (both decapitated and intact), whose glands were activated by PTTH. Furthermore, JH influences the PTTH release from the brain in situ: depending on JH concentration and the age and size of treated larvae, the PTTH liberation is either accelerated or delayed.Neither in G. mellonella larvae, nor in the diapausing pupae of Hyalophora cecropia and Celerio euphorbiae, does JH directly activate the prothoracic glands. It is suggested that the induction of the moult by JH in decerebrate insects, which has been observed in some species, is either due to indirect stimulation of ecdysteroid production or to increased sensitivity of target tissues to ecdysteroids. In G. mellonella, a moult occurs at a 5–15 times lower than usual ecdysteroid concentration when the last-instar larvae are exposed to JH.  相似文献   

11.
In recessive trimolter (rt) mutants of the silkworm, Bombyx mori, that have four larval instars rather than five larval instars of normal B. mori, a decrease after a small increase in the hemolymph ecdysteroid titer during the early stages of the last (fourth) larval instar appeared to be a prerequisite for larvae to undergo precocious metamorphosis. The present study was carried out to investigate the possible mechanism underlying this decrease in the ecdysteroid titer. It was found that juvenile hormone (JH) biosynthetic activity of the corpora allata (CA) increased during the first day of the last larval instar, but its absolute JH biosynthesis activity was relatively lower compared to that of normal fourth-instar larvae in tetramolters. This lowered JH biosynthetic activity appeared to be related to a decrease in prothoracic gland ecdysteroidogenesis during the second day of the last instar, because hydroprene application prevented this decrease in prothoracic gland ecdysteroidogenesis, leading to the induction of a supernumerary larval molt. The in vitro incubation of prothoracic glands with hydroprene showed that hydroprene did not directly exert its action on prothoracicotropic hormone (PTTH) release. Further study showed that the application of hydroprene enhanced the competency of the glands to respond to PTTH. From these results, it was supposed that the lowered JH biosynthesis of the CA during the first day of last instar in rt mutants was related to decreased ecdysteroidogenesis in the prothoracic glands during the second day, thus playing a role in leading to precocious metamorphosis.  相似文献   

12.
Using the Galleria prothoracicotropic bioassay, five small neurosecretory cells occurring in each dorsolateral part of protocerebrum of Galleria mellonella brain were identified as prothoracicotropic hormone (PTTH) cells. It was found that the critical period for the release of PTTH from a brain implanted in neck-ligated larva lasts up to the third day after implantation. The content of paraldehyde-fuchsin positive neurosecretory material (NSM) in PTTH cells was determined during the penultimate and last larval instar, during pupal instar, and in starved or poststarvation fed or space-deprived last instar larvae. Two peaks of NSM in PTTH cells were found in the penultimate instar (in freshly molted, and 76-h-old larvae), four peaks in the last instar larvae (in freshly molted, and in 67-, 132-, and 174-h-old larvae), and one peak in the pupal instar (in 56-76-h-old pupae). It was also observed that upon starvation NSM accumulated in PTTH cells, while after 3 h of poststarvation feeding it was released. In permanent space-deprived last instar larvae no NSM occurred in PTTH cells. In all investigated larval instars a rapid release of NSM from PTTH cells was found a few hours after molt associated with the beginning of the feeding period. The significance of the NSM content in PTTH cells is discussed in relation to ecdysteroid titer.  相似文献   

13.
Teratocytes deriving from the serosal membrane of Cardiochiles nigriceps Viereck, obtained “in vitro” from embryos hatched on a semidefined medium, were injected at different numbers and in different developmental stages of nonparasitized Heliothis virescens (F.) last instar larvae. Host development was affected by teratocyte injections and the responses registered ranged from normal to complete inhibition of pupation, according to the number of teratocytes injected and the developmental stage of the larva at time of injection. Complete pupation failure was observed when teratocytes derived from 4C nigriceps embryos were injected into 1st day 5th instar (new-slender stage) host larvae. Complete pupation occurred when teratocytes from 2 embryos were injected into 3rd or 4th day 5th instars (burrow-digging or day 1 cell formation stage). Intermediate responses, such as the formation of pupal cuticle without ecdysis or with only partial ecdysis, were obtained with intermediate teratocyte numbers, or host developmental stages. All pupae derived from teratocyte injected larvae failed to develop into adults normally obtained from control injected larvae. The larval weight just before pupation was negatively affected only when teratocyte injections were performed on 1st day 5th instar H. virescens larvae. Teratocyte injections altered the hemolymph protein titer to a level similar to that occurring in parasitized larvae. At the same time the ecdysteroid titer was characterized by a late significant increase, which reached values almost 3 times greater than found in normally parasitized larvae, and also surpassed the highest values registered for nonparasitized larvae. Ligation of parasitized larvae between the meso- and metathorax demonstrated that when the prothoracic glands were excluded, there was almost no ecdysteroid production posterior to the ligation. Ligations performed on parasitized larvae to isolate parasitoid eggs before hatching in the last abdominal segments, demonstrated that only virus and venom determined a reduction of the ecdysteroid titer. On the basis of these results the possible role of teratocytes in affecting the biological activity of ecdysteroids is postulated and discussed in a wider context of host-parasitoid physiological interactions.  相似文献   

14.
用放射免疫分析法(Radioimmunoassay,RIA)以12小时间隔测定了亚洲玉米螟Ostrinia tfurnacalis末龄非滞育幼虫血淋巴中蜕皮甾类激素滴度.通过前胸腺体外培养,以12小时间隔测定了前胸腺体外分泌活性的变化.发现二者的变化在相同发育阶段是一致的.在亚洲玉米螟上建立了促前胸腺激素(PTTH)体外测定法,并用此法以24小时间隔测定了末龄幼虫脑和血淋巴中PTTH滴度.发现血淋巴中PTTH滴度在末龄第5和7天各有一高峰,脑中只在第5天有一高峰.  相似文献   

15.
Fluctuations in ecdysteroid production by explanted prothoracic glands (PG) during the penultimate and last larval instars parallel changes in ecdysteroid titer in the hemolymph. The in vitro output of ecdysteroids increases up to 30-fold when PG are co-cultured with the brain. Maximal amounts of ecdysteroids are produced when both PG and brain are taken from larvae at the time of the molt-inducing ecdysteroid peaks (days 2–3 in the penultimate and days 5–6 in the last instar), and also from day 3 last instar larvae that exhibit a small rise of hemolymph ecdysteroids. Detailed investigations on penultimate instar larvae revealed that their PG become sensitive to the stimulation on day 1 (about 24 h after ecdysis), but the stimulatory brain potential is restricted to days 2 and 3. Both the stimulatory capacity of the brain and the sensitivity of PG are lost on days 4 and 5, i.e., after the ecdysteroid surge on day 3. PG explanted from young adults do not secrete appreciable amounts of ecdysteroids but can be stimulated to ecdysteroid production with active larval brains. Arch. Insect Biochem. Physiol. 36:85–93, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
The developmental pathology of Heliothis virescens larvae parasitized by the braconid wasp Microplitis croceipes was examined. Parasitized host larvae begin the same precise sequence of developmental events in preparation for pupation as observed in unparasitized larvae. This sequence is initiated even though the host larval weight is below the normal developmental threshold for larval-pupal transformation. After parasite emergence, the host remains in a suspended advanced developmental state but never pupates. The developmental parameters altered by parasitization are normally under the host's endocrine control. Neck ligation of control larvae was used to identify the critical periods in parasitized and unparasitized fourth- and fifth-instar larvae. Control ligated fourth-instar larvae apparently released PTTH between 21:00 AZT of the second day of the instar and 1:00 AZT of the third day. Parasitized fourth-instar larvae were smaller and apparently released PTTH between 18:00 and 23:00 AZT of the third day. Control ligated fifth-instar larvae apparently released PTTH between day 1 and day 2 of the cell formation phase. Ligated fifth-instar parasitized larvae never molted to the pupal stage. Parasite larvae were adversely affected by host neck ligation with their pupal plus cocoon weight being proportional to the age of the host at the time of ligation.  相似文献   

17.
Summary

An assay for the prothoracicotropic hormone (PTTH) has been established using in situ activation of the prothoracic glands (PG) of Bombyx mori in its larva-to-larva development. The timing of PTTH release was estimated by examining developmental response of 4th instar larvae to brain removal and neck ligation, and changes in the haemolymph ecdysteroid titer and ecdysone-releasing activity of PG in vitro during the development. Injection of Bombyx brain extracts into 4th instar larvae neck-ligated shortly before full activation of PG elicited larval moulting rather than precocious pupation in headless larvae. This developmental shift was regarded as due to the action of PTTH, and the PTTH unit has been defined from a linear log dose-response relationship. Materials chromatographically fractionated from Bombyx brain extracts were examined for the presence of stage- and species-specific PTTH molecules by using this Bombyx larva assay and Bombyx and Samia pupa assays previously developed. The same fractions were active when assayed by Bombyx larva and pupa assays.  相似文献   

18.
Parasitization of Galleria mellonella (Lepidoptera: Pyralididae) larvae by a larval endoparasitoid Apanteles galleriae (Hymenoptera: Braconidae) leads to the precocious expression of premetamorphic behavior in the sixth (normally penultimate) instar host larvae prior to the parasitoid's emergence. We investigated the role of parasitization with A. galleriae on the alteration of development and/or behavior of its host. The ecdysteroid titer in the hemolymph of parasitized sixth instar larvae (the last instar of parasitized larvae) was higher than that of unparasitized ones, and the high ecdysteroid concentrations induced premetamorphic behaviors such as wandering and cocoon spinning. However, the epidermis of the parasitized larvae was not pupally committed through this stage. The activity of JH esterase in the parasitized larvae remained low, and application of a JH analogue to these larvae caused the production of a larval-type cocoon. These facts suggest that the parasitization by A. galleriae induces precocious premetamorphic behaviors of G. mellonella larvae by changing host endocrine conditions without causing the typical larval-pupal metamorphosis. Arch. Insect Biochem. Physiol. 34:257–273, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The stage-dependent effects of starvation on the growth, metamorphosis, and ecdysteroidogenesis of the prothoracic glands during the last larval instar of the silkworm, Bombyx mori, were studied in the present study. When last instar larvae were starved beginning on day 1 of that instar, all larvae died between days 5 and 7 of the instar. Although the prothoracicotropic hormone (PTTH) release from the brain-corpus cardiacum-corpus allatum (BR-CC-CA) did not significantly change during starvation, a deficiency in PTTH signal transduction was maintained, which led to very low levels of hemolymph ecdysteroids after the beginning of starvation. However, when starvation began on day 3 of the last larval instar, the major hemolymph ecdysteroid peak, preceding larval-pupal transformation, occurred 1 day earlier than that in control larvae. Protein content of the prothoracic glands in day 3-starved larvae was maintained at a low level as compared to that of control larvae. The secretory activity of the prothoracic glands in day 3-starved larvae was maintained at a level similar to that of control larvae. However, the rate of ecdysteroidogenesis, expressed per microgram of glandular protein, was greatly enhanced in these starved larvae, indicating that upon starvation, larvae increased the ecdysteroid production rate to enhance the rate of survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号