首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic [125I]-Tyr23, Phe2, Nle4-adrenocorticotropin (ACTH)-(1–38) ([125I]-ACTH analog) with full biological potency and near theoretical specific radioactivity (1800 ± 75 Ci/mmol) was used to investigate ACTH receptors on isolated rat adipocytes derived from 42-day-old rats. Binding to adipocytes was studied in the presence of 1% bovine serum albumin (BSA) as well as 4% BSA. The interaction of the [125I]-ACTH analog with adipocytes was highly specific, rapid, saturable, and reversible. Scatchard analysis of the binding data obtained in medium containing 1% BSA revealed a single class of binding sites with an apparent KD = 170 ± 11.9 pM. Competition experiments with unlabeled ACTH also yielded a comparable value for the apparent KD (143 ± 16.5 pm). The number of receptors per adipocyte was quite low (521–841/cell). The stimulation of lipolysis by ACTH was closely correlated with the binding, the apparent Km being 145–177 pm. At a concentration of 4% BSA in the incubation medium, the binding curve was shifted significantly to the right (apparent KD = 446 ± 77 pM) and the binding capacity was also significantly enhanced (1663 ± 208/cell) without any change in the apparent Km for glycerol release (187 ± 7.1 pm).  相似文献   

2.
Two l-lactate dehydrogenase isoenzymes and one dl-lactate dehydrogenase could be separated from potato tubers by polyacrylamide-gel electrophoresis. The enzymes are specific for lactate, while β-hydroxybutyric acid, glycolic acid, and glyoxylic acid are not oxidized. Their pH optima are pH 6.9 for the oxidation and 8.0 for the reduction reaction.The Km values for l-lactate for the two isoenzymes are 2.00 × 10?2 and 1.82 × 10?2, m. In the reverse reaction the affinities for pyruvate are 3.24 × 10?4 and 3.34 × 10?4, m. Both enzymes have similar affinities for NAD and NADH (3.00 × 10?4; 4.00 × 10?4, and 8.35 × 10?4; 5.25 × 10?4, m).The dl-lactate oxidoreductase may transfer electrons either to NAD or N-methyl-phenazinemethosulfate. The Km values of this enzyme for l-lactate are 4.5 × 10?2, m and for d-lactate 3.34 × 10?2, m. Its affinity for pyruvate is 4.75 × 10?4, m. The enzyme is inhibited by excess NAD (Km = 1.54 × 10?4, M) and has an affinity toward NADH (Km = 5.00 × 10?3, M) which is about one tenth of that of the two isoenzymes of l-lactate dehydrogenase.  相似文献   

3.
The radioiodinated pindolol analogs 125I-labeled cyanopindolol ([125I]CYP) and 125I-labeled hydroxybenzylpindolol ([125I]HBP) have been used to study binding to human platelet β-adrenergic receptors. [125I]CYP binds to a saturable class of binding sites on platelet membranes with a dissociation constant (Kd) of 14±3 pM and maximal binding capacity (Bmax) of 18±4 fmol/mg protein. Binding of [125I]CYP is reversible and is characterized by forward and reverse rate constants of 1.8·107 s?1·M?1 and 3.8·10?4 s?1, respectively. [125I]HBP binds to a saturable class of platelet membrane sites with a Kd of 50±10 pM and Bmax of 32±6 fmol/mg protein. [125I]HBP also binds to a saturable class of sites on intact platelets with a Kd of 58±14 pM and Bmax of 24±4 molecules per platelet. Binding of [125I]CYP and [125I]HBP is stereospecifically inhibited by propranolol and epinephrine; the (?) stereoisomers are at least 50-times more potent than the (+) stereoisomers. Binding of both radioligands is inhibited by adrenergic ligands with a potency order of propranolol ? isoproterenol > epinephrine > practolol > norepinephrine > phenylephrine. These observations indicate that [125I]CYP and [125I]HBP bind to platelet sites which have the pharmacological characteristics of β-adrenergic receptors but which are not typical of either the β1 or β2 sub-type.  相似文献   

4.
Although previous studies from this and other laboratories have extensively characterized insulin degrading activity in animal tissues, little information has been available on insulin responsive human tissues. The present study describes the insulin degrading activity in skeletal muscle from normal human subjects. Fractionation of a sucrose homogenate of skeletal muscle demonstrated that 97% of the total neutral insulin degrading activity was in the 100 000 × g supernatant with no detectable glutathione-insulin transhydrogenase activity. The 100 000×g pellet contained 85% of the total acid protease activity and all the glutathione-insulin transhydrogenase activity. The soluble insulin degrading activity was purified 1400-fold by ammonium sulfate fractionation, molecular exclusion, ion-exchange and affinity chromatography. Enzymatic activity was determined by measuring an increase in trichloroacetic acid-soluble products of the 125I-labeled hormone substrates. The purified enzyme showed marked proteolytic specificity for insulin with a Km of 1.63·10?7 M (±0.32) and was competitively inhibited by proinsulin and glucagon with Ki values of 2.1 · 10?6 M and 4.0 · 10?6 M, respectively. This insulin protease exhibited a pH optimum between 7 and 8, a molecular weight of 120 000 and was capable of degrading glucagon. Inhibition studies demonstrated that a sulfhydryl group is essential for activity. Molecular exclusion chromatography of [125I]insulin degraded products revealed a time-dependent increase in degradation products with molecular weights intermediate between intact insulin and iodotyrosine. These studies demonstrate that the major enzymatic system responsible for insulin degrading activity is a soluble cysteine protease capable of rapidly metabolizing insulin under physiologic conditions.  相似文献   

5.
Concanavalin A, which binds to specific carbohydrate determinants on the cell surface, was used to investigate the binding of prolactin to its receptors in liver membranes from female rats. The binding of 125I-labeled ovine prolactin to receptors was sharply inhibited by concanavalin A. This effect was reversed by the competitive sugar α-methyl-D-mannopyranoside and thus required the presence of specifically bound lectin. Concentrations of concanavalin A of up to 50 μg/ml caused a progressive decrease in the apparent affinity of the prolactin receptor for hormone. When higher concentrations were used, the number of available binding sites decreased. Concanavalin A-resistant receptors, about 30% of the total, had the same dissociation constant (Kd) as the controls. The binding of 125I-labeled concanavalin A in the same membrane preparations showed the presence of two distinct types of concanavalin A binding. At low concentrations, the lectin bound with high affinity (Kd ≈ 6.6 · 10?8 M). At high lectin concentrations, low affinity (Kd ≈ 6.7 · 10?5 M) binding predominated. Since high affinity concanavalin A binding was saturated at 50 μg/ml, this class of binding most likely alters the affinity of the prolactin receptor for hormone; low affinity concanavalin A binding may mask prolactin receptors, making them inaccessible to the hormone.Binding sites for concanavalin A and prolactin appear to be independent but closely related since (i) concanavalin A did not displace bound prolactin from its receptor, and (ii) detergent-solubilized 125I-labeled prolactin-receptor complexes bound to concanavalin A-Sepharose and were eluted by α-methyl-D-mannopyranoside.  相似文献   

6.
Alcohol dehydrogenase was prepared from germinating soybean seeds. Specific activity was increased from 511 to 31316 units. The coenzyme is NAD with a Km of 10?4M. Allyl alcohol is oxidized faster than ethanol; with the latter substrate, the Km is 1.3 × 10?2M, and the pH optimum 8.7. The enzyme catalyses acetaldehyde reduction, with a Km of 10?2M and a pH opt of 7.1. The MW is 53(±5) × 10?3.  相似文献   

7.
Specific binding of 125I-labeled α-bungarotoxin to a 34 800 × g pellet of a whole rat brain homogenate has been obtained at levels 2 pmol toxin per g of whole brain with a Kd of 8·10?9 M. Binding is reduced 90% by 10?5 M (+)- tubocurarine chloride and 10?4 M nicotine, whereas concentrations of 10?4 M choline chloride, atropine sulfate and eserine sulfate have essentially no effect on toxin binding. These results compare closely with those obtained from binding studies with 125I-labeled α-bungarotoxin and soluble acetylcholine receptor protein preparations form Torpedo nobiliana; suggesting that this mammalian receptor protein is nicotinic in character.Extraction of the 34 800 × g pellet with 1% Emulphogene yields a soluble fraction with specifically binds 125I-labeled α-bungarotoxin with a Kd of 5·10?9 M. Nicotine and α-bungarotoxin at concentrations of 10?5 M abolish toxin- receptor complex formation and carbachol and (+)-tubocurarine chloride reduce complex formation 35–40% at similar concentrations. Eserine sulfate, atropine sulfate, decamethonium, and pilocarpine had no effect on complex formation at concentrations of 10?5 M.  相似文献   

8.
Presented here are procedural modifications whic permit the utilization of 125I-labeled Met-enkephalin as substrate in the assay of rat brain enkephalin amipeptidase. The hydrolysis of enkephalin is monitored by the release of [125I]tyrosine separated on Porapak Q. The release of tyrosine is proportionate with both increasing time and tissue concentration. The estimated Km is near 10?4 M and the enzyme activity can be inhibited more than 95% with puromycin. The majority of the enzyme activity remains in the 100 000 × g supernatant following differential centrifugation.  相似文献   

9.
The Caulobacter crescentus (NA1000) xynB5 gene (CCNA_03149) encodes a predicted β-glucosidase-β-xylosidase enzyme that was amplified by polymerase chain reaction; the product was cloned into the blunt ends of the pJet1.2 plasmid. Analysis of the protein sequence indicated the presence of conserved glycosyl hydrolase 3 (GH3), β-glucosidase-related glycosidase (BglX) and fibronectin type III-like domains. After verifying its identity by DNA sequencing, the xynB5 gene was linked to an amino-terminal His-tag using the pTrcHisA vector. A recombinant protein (95 kDa) was successfully overexpressed from the xynB5 gene in E. coli Top 10 and purified using pre-packed nickel-Sepharose columns. The purified protein (BglX-V-Ara) demonstrated multifunctional activities in the presence of different substrates for β-glucosidase (pNPG: p-nitrophenyl-β-D-glucoside) β-xylosidase (pNPX: p-nitrophenyl-β-D-xyloside) and α-arabinosidase (pNPA: p-nitrophenyl-α-L-arabinosidase). BglX-V-Ara presented an optimal pH of 6 for all substrates and optimal temperature of 50 °C for β-glucosidase and α-l-arabinosidase and 60 °C for β-xylosidase. BglX-V-Ara predominantly presented β-glucosidase activity, with the highest affinity for its substrate and catalytic efficiency (Km 0.24 ± 0.0005 mM, Vmax 0.041 ± 0.002 µmol min?1 mg?1 and Kcat/Km 0.27 mM?1 s?1), followed by β-xylosidase (Km 0.64 ± 0.032 mM, Vmax 0.055 ± 0.002 µmol min?1 mg?1 and Kcat/Km 0.14 mM?1s?1) and finally α-l-arabinosidase (Km 1.45 ± 0.05 mM, Vmax 0.091 ± 0.0004 µmol min?1 mg?1 and Kcat/Km 0.1 mM?1 s?1). To date, this is the first report to demonstrate the characterization of a GH3-BglX family member in C. crescentus that may have applications in biotechnological processes (i.e., the simultaneous saccharification process) because the multifunctional enzyme could play an important role in bacterial hemicellulose degradation.  相似文献   

10.
Preincubation of membranes with various concentrations of pronase, trypsin, lipase, phospholipase A from Vipera russelli and from Crotalus durissus terrificus, phospholipase C from Bacillus cereus and from Clostridium welchii, acetic anhydride, 2,4-dinitrofluorobenzene and tetranitromethane resulted in a dose-dependent inhibition of 125I-labeled human choriogonadotropin binding. At the submaximal concentrations of enzymes and at both submaximal and maximal concentrations of protein-modifying reagents, the losses were always greater with 125I-labeled human choriogonadotropin than with 125I-labeled human lutropin. The inhibition of binding was a consequence of changes in the membranes rather than changes in the hormone caused by the agents being carried over to the final incubation. Inhibition of binding was non-competitive and irreversible.In untreated membranes, the 125I-labeled human choriogonadotropin binding was homogenous (Kd = 1.7 · 10?10 M; N = 60 fmol/mg protein). Treatment of membranes with various enzymes and protein-modifying reagents except tetranitromethane resulted in heterogeneous binding. The number of available high affinity receptors was greatly reduced in every case. However, the affinity of these sites were either unchangedd (trypsin, lipase, phospholipase A from V. russelli, dinitrofluorobenzene and the tetranitromethane) or decreased (pronase and acetic anhydride). the newly appeared second receptor site had a Kd which varied from 3.2 · 10?10 to 7.1 · 10?9d M depending on the agent used, and the receptor numbers were low in all cases except acetic anhydride.Receptor occupancy conferred the receptors with marked protection against various hydrolytic enzymes, dinitrofluorobenzene and tetranitromethane. These data suggest the inhibition of binding by the above agents was primarily a consequence of changes in the receptor molecules themselves.  相似文献   

11.
R.K. Sindhu  H.V. Desai 《Phytochemistry》1979,18(12):1937-1938
Agmatine iminohydrolase was purified ca 375-fold from groundnut cotyledons. The enzyme exhibited an optimum pH between 5.5 and 8.5 and the energy of activation was 22 kcal/mol. The Km for agmatine was (7.57 ± 0.77) × 10?4 M. The enzyme was inhibited by tryptamine, putrescine, cadaverine, spermidine and spermine. Inhibition by cadaverine and spermidine was competitive. The Ki values for cadaverine and spermidine were 4.1 × 10?3 and 7.5 × 10?4 M, respectively.  相似文献   

12.
DEAE-cellulose-purified Trypanosoma lewisi from 4-day (dividing trypanosomes) and 7-day (non-dividing trypanosomes) infections in rats were compared for initial uptake of glucose, leucine, and potassium. Glucose entered the parasitic cells by mediated (saturable) processes, whereas leucine and K+ entered by mediated processes and diffusion. Glucose entry was significantly elevated in 4-day cells (Vmax 4.00 ± 1.02 nmoles/ 1 × 108 cells/min) with respect to 7-day cells (Vmax 1.83 ± 0.62 nmoles 1 × 108 cells/min). Likewise, the affinity of the glucose carrier was significantly greater in 4-day cells (Km = 0.30 ± 0.02 mM) than in 7-day cells (Km = 0.59 ± 0.11 mM). When leucine and K+ transport were compared in 4- and 7-day populations, significant elevations in the rate of entry (Vmax) of both substrates were observed for 4-day cells; Km values for leucine and K+ were not altered by the stage of infection. For leucine, the Vmax and Km for 4-day cells were 2.40 ± 0.50 nmoles/1 × 108 cells/30 sec and 78 ± 7 μM, respectively; corresponding values in 7-day cells were 1.06 ± 0.02 nmoles/1 × 108 cells/30 sec and 66 ± 11 μM. For K+, the Vmax and Km for 4-day cells were 15.97 ± 0.38 nmoles/1 × 108 cells/min and 1.2 mM, respectively; corresponding values in 7-day cells were 4.76 ± 1.82 nmoles/1 × 108 cells/min and 1.05 mM. The observed increase in the rate of K+ entry into 4-day cells was attributable to enhanced influx; no significant difference in the rate of K+ efflux was noted when 4- and 7-day cells were compared (t12 of K+ leak for 4- and 7-day cells were 68.1 ± 9.3 and 67.9 ± 15.2 min, respectively). Potassium influx was ouabain insensitive. Membrane function in 7-day cells was not uniformly inhibited. No significant difference in the activity of the membrane-bound enzyme, 5′-nucleotidase, was observed when 4- and 7-day cells were compared.  相似文献   

13.
ABSTRACT

Chondroitin sulfate (CS) used for treatment of osteoarthritis exerts distinct effects on human articular chondrocytes in vitro. We performed a binding analysis with 99mTc-labeled CS (Condrosulf, a commercial CS preparation containing calcium stearate) and cultured human chondrocytes in order to evaluate the presence of specific receptors. Saturation binding at 37°C for 2?h revealed the presence of high-affinity binding sites for CS with a Kd of 2.3 × 10?9?mol/L and a Bmax of 5.0 × 108. Extensive dialysis of Chondrosulf led to a decrease of the binding affinity by 52.5 ± 19.5% and of the number of CS binding sites/cell by 62.0 ± 14.0%, demonstrating that the additive present in the Condrosulf preparation enhances CS binding. The nature of the binding site is not yet known but evidence exists in the literature that the scavenger receptor CD36, thoroughly investigated on macrophages, is also found on chondrocytes and might be involved in CS binding. Therefore, we undertook a comparative binding study with human monocytes and labelled LDL and oxidized LDL, the latter being a postulated atherogenic agent in atherosclerosis. For [125I]-LDL binding we found a Kd of 0.45 × 10?8?mol/L and a Bmax of 0.14 × 106 on quiescent monocytes and for [125I]-(ox)LDL binding a Kd of 1.8 × 10?8?mol/L and a Bmax of 1.3 × 106 using LPS-activated monocytes. These data are comparable to the binding affinity found for lipoprotein–proteoglycan-complexes and hence are an indication but not a proof that CD36 is involved in CS binding to human chondrocytes.  相似文献   

14.
The pharmacological specificity of the binding of 125I-labeled α-bungarotoxin to a 1% Emulphogene BC-720 extract of a rat brain particulate fraction has been investigated. The extract contains a component which possesses the binding characteristics of a nicotinic acetylcholine receptor protein. The crude soluble acetylcholine receptor protein was purified by affinity chromatography utilizing the α-neurotoxin of Naja naja siamensis as ligand and 1.0 M carbamylcholine chloride as eluant. A single, batch-wise, affinity chromatography procedure yields an average purification of 510-fold. When this purified material is treated a second time by affinity chromatography, purification as high as 12 600-fold has been obtained. Binding of 125I-labeled α-bungarotoxin to this purified acetylcholine receptor protein is saturable with a Kd of 1·10?8 M. Nicotine and acetylcholine iodide at concentrations of 10?5 M inhibit 125I-labeled toxin-acetylcholine receptor protein complex formation by 41 and 61% respectively. At 10?4 M, carbamylcholine chloride and (+)-tubocurarine chloride give respectively 52 and 82% inhibition. Eserine sulfate and atropine sulfate have no effect on complex formation at a concentration of 10?4 M. These data support the isolation of partially purified nicotinic acetylcholine receptor protein.  相似文献   

15.
Porphyrins are a chemical class that is widely used in drug design. Cationic porphyrins may bind to DNA guanine quadruplexes. We report the parameters of the binding of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium) porphyrin (P1) and 5,10,15,20-tetrakis(N-etoxycarbonylmethyl-4-pyridinium) porphyrin (P2) to antiparallel telomeric G-quadruplex formed by d(TTAGGG)4 sequence (TelQ). The binding constants (K i ) and the number of binding sites (N j ) were determined from absorption isotherms generated from the absorption spectra of complexes of P1 and P2 with TelQ. Compound P1 demonstrated a high affinity to TelQ (K i = (40 ± 6) × 106 M?1, N 1 = 1; K 2 = (5.4 ± 0.4) × 106 M?1, N 2 = 2). In contrast, the binding constants of P2-TelQ complexes (K 1 = (3.1 ± 0.2) × 106 M?1, N 1 = 1; K 2 = (1.2 ± 0.2) × 106 M?1, N 2 = 2) were one order of magnitude smaller than the corresponding values for P2-TelQ complexes. Measurements of the quantum yield and fluorescence lifetime of the drug’s TelQ complexes revealed two types of binding sites for P1 and P2 on the quadruplex oligonucleotide. We concluded that strong complexes can result from the interaction of the porphyrins with TTA loops whereas the weaker complexes are formed with G-quartets. The altered TelQ conformation detected by the circular dichroism spectra of P1-TelQ complexes can be explained by the disruption of the G-quartet. We conclude that peripheral carboxy groups contribute to the high affinity of P1 for the antiparallel telomeric G-quadruplex.  相似文献   

16.
The non-denaturing zwitterionic detergent, (3 (3-cholamidopropyl)-dimethyl-ammonio)-1-propane sulfonate (CHAPS), has been used to solubilize membrane gonadotropin-releasing hormone (GnRH) receptors from rat ovaries. The solubilized receptors retain a high affinity (Ka = 1.85 ± 0.3 nM?1), comparable to the affinity measured in membrane particles (Ka = 3.25 ± 0.7 nM?1), and a preserved specificity for several analogs and fragments of GnRH. At millimolar concentrations, cyclic AMP derivatives inhibit [125I] - GnRH analog binding to both membrane particles and soluble receptors from pituitary and ovary. These results support the hypothesis that cyclic AMP may play the role of an extracellular messenger by interacting with the GnRH receptor itself.  相似文献   

17.
Nucleotide inhibition of 125I-labeled human chorionic gonadotropin binding to luteocyte receptor was studied by investigating effects of nucleotides on the apparent equilibrium association constant (Ka) and number of binding sites (Bmax), and on rate constants for association (k+1) and dissociation (k?1, k?2). KaandBmax were determined by various analyses of equilibrium binding data using washed 2000g pellet of an ovarian homogenate from rats 7 days after pregnant mare's serum gonadotropin-human chorionic gonadotropin priming. Adenyl and guanyl nucleotides, as well as other nucleotides, lowered the Ka of 125I-labeled human chorionic gonadotropin binding to luteocyte receptor without affecting Bmax. The degree of inhibition was dose related at nucleotide concentrations greater than 10?3 m. GTP and guanyl-5′-ylimidodiphosphate inhibitions were similar in the presence or absence of EDTA (1.25 × 10?3 m). ATP and GTP lowered Ka by slowing the rate of association. Inhibition of binding could not be demonstrated at lower nucleotide concentrations even when luteocyte membranes were purified partially by sucrose density gradient ultracentrifugation. In light of the high nucleotide concentrations required to inhibit 125I-labeled human chorionic gonadotropin binding and the inhibition by Mg2+ and PP1 at similar concentrations, the effect appears to be a nonspecific ionic effect. Therefore, in contrast to the glucagon-hepatocyte system, luteocyte human chorionic gonadotropin responsiveness does not appear to be modulated by nucleotide inhibition of human chorionic gonadotropin-receptor interaction.  相似文献   

18.
Calcium-binding stoichiometry, dissociation equilibrium constants at zero ionic strength (K0), and molar extinction difference coefficients (Δ?λ) at the wavelength λ of the metallochromic indicators arsenazo I (ArsI) and tetramethylmurexide (TMX) were reevaluated with a computerized method based on mass conservation and thermodynamic consistency checks. This new method is shown to provide a more critical assessment of the assumed calcium-dye complexing model than is afforded by the commonly used reciprocal-plot method. The analyses of spectrophotometric Ca titrations confirm that both dyes form only 1:1 complexes in aqueous solution. For TMX, K0 = 1.3 × 10?3m and Δ?480 = 1.5 × 104m?1 cm?1; for ArsI, K0 = 5.8 × 10?3m and Δ?562 = 1.8 × 104m?1 cm?1 at pH 7.0 and T = 293°K. The discriminatory power of the analytical method is demonstrated by comparison of these results with those found for a different dye, arsenazo III, which complexes Ca in 1:1, 1:2, and 2:1 forms.  相似文献   

19.
Abstract

Saturation experiments were performed on intact human peripheral mononuclear leucocytes (MNL) and MNL membranes with (-)125Iodocyanopindolol (125ICYP) over a large concentration range (1.5-600pmol/l). The corresponding Scatchard plots were curvilinear suggesting two saturable classes of binding sites: A high affinity binding site (Bmax1=1000±400 sites/cell, Kd1= 2.1±0.9 pmol/l for intact MNL and Bmax1=550±190 sites/cell, Kd1=4.1±0.9 pmol/l for MNL membranes)and a low affinity binding site (Bmax2=9150±3590 binding sites/cell, Kd2=440±50 pmol/l for intact MNL and Bmax2=11560±4690 sites/cell, Kd2=410±70 pmol/l for MNL membranes). Dissociation of (-)125ICYP from MNL was biphasic consisting of a slow dissociating component (dissociation rate constant k-1=(0.5±0.2)x10?3 min?1 for intact MNL and k-1=(1.0±0.1)x10?3min?1 for MNL membranes) and a fast dissociating component (k-2=(80±20)x10?3min?1 for intact MNL and k-2=(60±10)x10?3min?1 for MNL membranes). In dissociation experiments started after equilibration with various (-)125ICYP concentrations k-1 and k-2 were independent of the equilibrium concentration, whereas the percentual occupancy of the slow and the fast dissociating component varied and was similar to the estimated fractional occupancy of either binding site at the same (-)125ICYP concentrations in saturation experiments. The association rate constant was in the same order of magnitude for both binding sites. These results suggest two independent classes of binding sites for (-)125ICYP on MNL.  相似文献   

20.
W B Campbell  P E Ward 《Life sciences》1979,24(21):1995-2001
Substance P is a potent vasodilatory, diuretic, and natriuretic agent. Since subcellular fractions of the kidney rapidly inactivate substance P in vitro, the present study was designed to examine this observation invivo in anesthetized dogs. Arterial, renal venous, and urinary levels of immunoreactive substance P were determined by radioimmunoassay and were found to be 117±11, 128±12 and 659±104 pg/ml, respectively. The urinary and fractional excretion of immunoreactive substance P were 122±22 pg/min and 6.6±2.0%, respectively. When substance P was infused intravenously, the arterial and renal venous plasma levels of immunoreactive material increased whereas the urinary levels did not change. Infusions of 50 ng/kg/min of substance P significantly decreased mean arterial pressure, urinary volume, creatinine clearance as well as the urinary excretion, clearance, and fractional excretion of immunoreactive substance P. During intrarenal infusion of 125I-(8-Tyr) substance P, high levels of radioactive material were found in the urine and renal venous plasma which failed to migrate on thin layer chromatography with intact 125I-(8-Tyr) substance P. Thus under these conditions, intact substance P was not released from the kidney into the urine or renal venous blood, but instead circulating substance P was rapidly and completely metabolized, probably by both vascular and tubular elements of the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号