首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-synuclein gene mutations are major underlying genetic defects known in familial juvenile onset Parkinson's disease (PD), and α-synuclein is a major constituent of Lewy Bodies, the pathological hallmark of PD. The normal cellular function of α-synuclein has been elusive, and its exact etiological mechanism in causing dopaminergic neuronal death in PD is also not clearly understood. Very recent reports now indicate that mutant or simply over-expressed α-synuclein could cause damage by interfering with particular steps of neuronal membrane traffic. α-synuclein selectively blocks endoplamic reticulum-to-Golgi transport, thus causing ER stress. A screen in a yeast revealed that α-synuclein toxicity could be suppressed by over-expression of the small GTPase Ypt1/Rab1, and that over-expression of the latter rescues neuron loss in invertebrate and mammalian models of α-synuclein-induced neurodegeneration. α-synuclein may also serve a chaperone function for the proper folding of synaptic SNAREs that are important for neurotransmitter release. We discuss these recent results and the emerging pathophysiological interaction of α-synuclein with components of neuronal membrane traffic.  相似文献   

2.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies. Recently, two point mutations in alpha-synuclein were found to be associated with familial PD, but as of yet no mutations have been described in the homologous genes beta- and gamma-synuclein. alpha-Synuclein forms the major fibrillar component of Lewy bodies, but these do not stain for beta- or gamma-synuclein. This result is very surprising, given the extent of sequence conservation and the high similarity in expression and subcellular localization, in particular between alpha- and beta-synuclein. Here we compare in vitro fibrillogenesis of all three purified synucleins. We show that fresh solutions of alpha-, beta-, and gamma- synuclein show the same natively unfolded structure. While over time alpha-synuclein forms the previously described fibrils, no fibrils could be detected for beta- and gamma-synuclein under the same conditions. Most importantly, beta- and gamma-synuclein could not be cross-seeded with alpha-synuclein fibrils. However, under conditions that drastically accelerate aggregation, gamma-synuclein can form fibrils with a lag phase roughly three times longer than alpha-synuclein. These results indicate that beta- and gamma-synuclein are intrinsically less fibrillogenic than alpha-synuclein and cannot form mixed fibrils with alpha-synuclein, which may explain why they do not appear in the pathological hallmarks of PD, although they are closely related to alpha-synuclein and are also abundant in brain.  相似文献   

3.
Alpha-synuclein is a neuronal protein thought to be central in the pathogenesis of Parkinson's disease (PD) because it comprises the fibrillar core of Lewy bodies, one of the histologically defining lesions of PD, and because mutations in alpha-synuclein cause autosomal dominant PD. Although its physiologic role is uncertain, alpha-synuclein is a synaptic protein that may contribute to plasticity. We produced synuclein with incorporated photoprobes to identify and purify novel synuclein-interacting proteins both to begin to clarify the physiology of synuclein and to identify factors that may regulate synuclein conformation. We detected several cross-links and purified and identified one as calmodulin (CaM). CaM binds to both wild type and PD-associated mutant alpha-synucleins in a calcium-dependent manner. We further demonstrate that CaM and alpha-synuclein interact in intact cells in a calcium-dependent manner and that activated CaM accelerates the formation of synuclein fibrils in vitro. We hypothesize that the known calcium control of synuclein function is mediated through CaM interaction and that CaM potentially alters synuclein conformation.  相似文献   

4.
The discovery of two missense mutations in alpha-synuclein gene and the identification of the alpha-synuclein as the major component of Lewy bodies and Lewy neurites have imparted a new direction in understanding Parkinson's disease. Now that alpha-synuclein has been implicated in several neurodegenerative disorders makes it increasingly clear that aggregation of alpha-synuclein is a hallmark feature in neurodegeneration. Although little has been learned about its normal function, alpha-synuclein appears to be associated with membrane phospholipids and may therefore participate in a number of cell signaling pathways. Here, we review the localization, structure, and function of alpha-synuclein and provide a new hypothesis on, (a) the disruption in the membrane binding ability of synuclein which may be the major culprit leading to the alpha-synuclein aggregation and (b) the complexity associated with nuclear localization of alpha-synuclein and its possible binding property to DNA. Further, we postulated the three possible mechanisms of synuclein induced neuronal degeneration in Parkinson's disease.  相似文献   

5.
alpha-Synuclein is a major component of the fibrillary lesion known as Lewy bodies and Lewy neurites that are the pathologic hallmarks of Parkinson's disease (PD). In addition, point mutations in the alpha-synuclein gene imply alpha-synuclein dysfunction in the pathology of inherited forms of PD. alpha-Synuclein is a member of a family of proteins found primarily in the brain and is concentrated within presynaptic terminals. Here, we address the localization and membrane binding characteristics of wild type and PD mutants of alpha-synuclein in cultured cells. In cells treated with high concentrations of fatty acids, wild type alpha-synuclein accumulated on phospholipid monolayers surrounding triglyceride-rich lipid droplets and was able to protect stored triglycerides from hydrolysis. PD mutant synucleins showed variable distributions on lipid droplets and were less effective in regulating triglyceride turnover. Chemical cross-linking demonstrated that synuclein formed small oligomers within cells, primarily dimers and trimers, that preferentially associated with lipid droplets and cell membranes. Our results suggest that the initial phases of synuclein aggregation may occur on the surfaces of membranes and that pathological conditions that induce cross-linking of synuclein may enhance the propensity for subsequent synuclein aggregation.  相似文献   

6.
Engelender S 《Autophagy》2008,4(3):372-374
alpha-Synuclein is mutated in Parkinson's disease (PD) and is found in cytosolic inclusions, called Lewy bodies, in sporadic forms of the disease. A fraction of alpha-synuclein purified from Lewy bodies is monoubiquitinated, but the role of this monoubiquitination has been obscure. We now review recent data indicating a role of alpha-synuclein monoubiquitination in Lewy body formation and implicating the autophagic pathway in regulating these processes. The E3 ubiquitin-ligase SIAH is present in Lewy bodies and monoubiquitinates alpha-synuclein at the same lysines that are monoubiquitinated in Lewy bodies. Monoubiquitination by SIAH promotes the aggregation of alpha-synuclein into amorphous aggregates and increases the formation of inclusions within dopaminergic cells. Such effect is observed even at low monoubiquitination levels, suggesting that monoubiquitinated alpha-synuclein may work as a seed for aggregation. Accumulation of monoubiquitinated alpha-synuclein and formation of cytosolic inclusions is promoted by autophagy inhibition and to a lesser extent by proteasomal and lysosomal inhibition. Monoubiquitinated alpha-synuclein inclusions are toxic to cells and recruit PD-related proteins, such as synphilin-1 and UCH-L1. Altogether, the new data indicate that monoubiquitination might play an important role in Lewy body formation. Decreasing alpha- synuclein monoubiquitination, by preventing SIAH function or by stimulating autophagy, constitutes a new therapeutic strategy for Parkinson's disease.  相似文献   

7.
Mutations in alpha-synuclein cause a form of familial Parkinson's disease (PD), and wild-type alpha-synuclein is a major component of the intraneuronal inclusions called Lewy bodies, a pathological hallmark of PD. These observations suggest a pathogenic role for alpha-synuclein in PD. Thus far, however, little is known about the importance of alpha-synuclein in the nigral dopaminergic pathway in either normal or pathological situations. Herein, we studied this question by assessing the expression of synuclein-1, the rodent homologue of human alpha-synuclein, in both normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. In normal mice, detectable levels of synuclein mRNA and protein were seen in all brain regions studied and especially in ventral midbrain. In the latter, there was a dense synuclein-positive nerve fiber network, which predominated over the substantia nigra, and only few scattered synuclein-positive neurons. After a regimen of MPTP that kills dopaminergic neurons by apoptosis, synuclein mRNA and protein levels were increased significantly in midbrain extracts; the time course of these changes paralleled that of MPTP-induced dopaminergic neurodegeneration. In these MPTP-injected mice, there was also a dramatic increase in the number of synuclein-immunoreactive neurons exclusively in the substantia nigra pars compacta; all synuclein-positive neurons were tyrosine hydroxylase-positive, but none coexpressed apoptotic features. These data indicate that synuclein is highly expressed in the nigrostriatal pathway of normal mice and that it is up-regulated following MPTP-induced injury. In light of the synuclein alterations, it can be suggested that, by targeting this protein, one may modulate MPTP neurotoxicity and, consequently, open new therapeutic avenues for PD.  相似文献   

8.
Zhu M  Qin ZJ  Hu D  Munishkina LA  Fink AL 《Biochemistry》2006,45(26):8135-8142
Alpha-synuclein, a presynaptic protein associated with Parkinson's disease, is found as both soluble cytosolic and membrane-bound forms. Although the function of alpha-synuclein is unknown, several observations suggest that its association with membranes is important. In the present study we investigated the effect of alpha-synuclein on lipid oxidation in membranes containing phospholipids with unsaturated fatty acids. The kinetics of lipid oxidation were monitored by the change in fluorescence intensity of the dye C11-BODIPY. We find that monomeric alpha-synuclein efficiently prevented lipid oxidation, whereas fibrillar alpha-synuclein had no such effect. Our data suggest that the prevention of unsaturated lipid oxidation by alpha-synuclein requires that it bind to the lipid membrane. The antioxidant function of alpha-synuclein is attributed to its facile oxidation via the formation of methionine sulfoxide, as shown by mass spectrometry. These findings suggest that the inhibition of lipid oxidation by alpha-synuclein may be a physiological function of the protein.  相似文献   

9.
The neuronal protein alpha-synuclein is thought to be central in the pathogenesis of Parkinson's disease (PD). Excessive wild type alpha-synuclein levels can lead to PD in select familial cases and alpha-synuclein protein accumulation occurs in sporadic PD. Therefore, elucidation of the mechanisms that control alpha-synuclein levels is critical for PD pathogenesis and potential therapeutics. The subject of alpha-synuclein degradation has been controversial. Previous work shows that, in an assay with isolated liver lysosomes, purified wild type alpha-synuclein is degraded by the process of chaperone-mediated autophagy (CMA). Whether this actually occurs in a cellular context has been unclear. In our most recent work, we find that wild type alpha-synuclein, but not the closely related protein beta-synuclein, is indeed degraded by CMA in neuronal cells, including primary postnatal ventral midbrain neurons. Macroautophagy, but not the proteasome, also contributes to alpha-synuclein degradation. Therefore, two separate lysosomal pathways, CMA and macroautophagy, degrade wild type alpha-synuclein in neuronal cells. It is hypothesized that impairment of either of these two pathways, or of more general lysosomal function, may be an initiating factor in alpha-synuclein accumulation and sporadic PD pathogenesis.  相似文献   

10.
Neurobiology of α-synuclein   总被引:4,自引:0,他引:4  
  相似文献   

11.
《Autophagy》2013,9(7):917-919
The neuronal protein alpha-synuclein is thought to be central in the pathogenesis of Parkinson’s Disease (PD). Excessive wild type alpha-synuclein levels can lead to PD in select familial cases and alpha-synuclein protein accumulation occurs in sporadic PD. Therefore, elucidation of the mechanisms that control alpha-synuclein levels is critical for PD pathogenesis and potential therapeutics. The subject of alpha-synuclein degradation has been controversial. Previous work show that, in an assay with isolated liver lysosomes, purified wild type alpha-synuclein is degraded by the process of Chaperone Mediated Autophagy (CMA). Whether this actually occurs in a cellular context has been unclear. In our most recent work, we find that wild type alpha-synuclein, but not the closely related protein beta-synuclein, is indeed degraded by CMA in neuronal cells, including primary postnatal ventral midbrain neurons. Macroautophagy, but not the proteasome, also contributes to alpha-synuclein degradation. Therefore, two separate lysosomal pathways, CMA and macroautophagy, degrade wild type alpha-synuclein in neuronal cells. It is hypothesized that impairment of either of these two pathways, or of more general lysosomal function, may be an initiating factor in alpha-synuclein accumulation and sporadic PD pathogenesis.

Addendum to: Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type α-synuclein is degraded by chaperone mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 2008; In press.  相似文献   

12.
Narayanan V  Scarlata S 《Biochemistry》2001,40(33):9927-9934
Although its function is unknown, alpha-synuclein is widely distributed in neural tissue and is the major component in the pathological aggregates found in patients with Parkinson's disease, Alzheimer's disease, Down's syndrome, and multiple system atrophy. In this report, we have quantified the binding alpha-synucleins to lipid membranes. In contrast to previous studies, we find, using real time equilibrium fluorescence methods, that alpha-synuclein binds strongly to large, unilamellar vesicles with either anionic or zwitterionic headgroups. Membrane binding is also strong for beta-synuclein, phosphorylated alpha-synuclein, and a synuclein mutant that is associated with familial Parkinson's disease. In solution at less than 400 nM, synuclein has a tendency to undergo concentration-dependent oligomerization as determined by changes in intrinsic fluorescence and fluorescence resonance energy transfer. Above this concentration, the protein begins to aggregate into structures visible by light scattering. Although membrane binding does not affect the secondary structure of alpha-synuclein, it greatly inhibits the ability of this protein to self-associate. Taken together, our results indicate that pathological conditions may be associated with a disruption in synuclein-membrane interactions.  相似文献   

13.
The accumulation of aggregated alpha-synuclein is thought to contribute to the pathogenesis of Parkinson's disease. Recent studies indicate that aggregated alpha-synuclein binds to S6', a component of the 19 S subunit in the 26 S proteasome and inhibits 26 S proteasomal degradation, both ubiquitin-independent and ubiquitin-dependent. The IC(50) of aggregated alpha-synuclein for inhibition of the 26 S ubiquitin-independent proteasomal activity is approximately 1 nm. alpha-Synuclein has two close homologues, termed beta-synuclein and gamma-synuclein. In the present study we compared the effects of the three synuclein homologues on proteasomal activity. The proteasome exists as a 26 S and a 20 S species, with the 26 S proteasome containing the 20 S core and 19 S cap. Monomeric alpha- and beta-synucleins inhibited the 20 S and 26 S proteasomal activities only weakly, but monomeric gamma-synuclein strongly inhibited ubiquitin-independent proteolysis. The IC(50) of monomeric gamma-synuclein for the 20 S proteolysis was 400 nm. In monomeric form, none of the three synuclein proteins inhibited 26 S ubiquitin-dependent proteasomal activity. Although beta-synuclein had no direct effect on proteasomal activity, co-incubating monomeric beta-synuclein with aggregated alpha-synuclein antagonized the inhibition of the 26 S ubiquitin-independent proteasome by aggregated alpha-synuclein when added before the aggregated alpha-synuclein. Co-incubating beta-synuclein with gamma-synuclein had no effect on the inhibition of the 20 S proteasome by monomeric gamma-synuclein. Immunoprecipitation and pull-down experiments suggested that antagonism by beta-synuclein resulted from binding to alpha-synuclein rather than binding to S6'. Pull-down experiments demonstrated that recombinant monomeric beta-synuclein does not interact with the proteasomal subunit S6', unlike alpha-synuclein, but beta-synuclein does bind alpha-synuclein and competes with S6' for binding to alpha-synuclein. Based on these data, we hypothesize that the alpha- and gamma-synucleins regulate proteasomal function and that beta-synuclein acts as a negative regulator of alpha-synuclein.  相似文献   

14.
We previously observed marked down-regulation of the mRNA for angiogenin, a potent inducer of neovascularization, in a mouse model of Parkinson's disease (PD) based on over-expression of alpha-synuclein. Angiogenin has also been recently implicated in the pathogenesis of amyotrophic lateral sclerosis. In this study, we confirmed that mouse angiogenin-1 protein is dramatically reduced in this transgenic alpha-synuclein mouse model of PD, and examined the effect of angiogenin in cellular models of PD. We found that endogenous angiogenin is present in two dopamine-producing neuroblastoma cell lines, SH-SY5Y and M17, and that exogenous angiogenin is taken up by these cells and leads to phosphorylation of Akt. Applied angiogenin protects against the cell death induced by the neurotoxins 1-methyl-4-phenylpyridinium and rotenone and reduces the activation of caspase 3. Together our data supports the importance of angiogenin in protecting against dopaminergic neuronal cell death and suggests its potential as a therapy for PD.  相似文献   

15.
Lewy bodies (LBs) are pathological hallmarks of Parkinson disease (PD) but also occur in Alzheimer disease (AD) and dementia of LBs. Alpha-synuclein, the major component of LBs, is observed in the brain of Down syndrome (DS) patients with AD. Dyrk1A, a dual specificity tyrosine-regulated kinase (Dyrk) family member, is the mammalian ortholog of the Drosophila minibrain (Mnb) gene, essential for normal postembryonic neurogenesis. The Dyrk1A gene resides in the human chromosome 21q22.2 region, which is associated with DS anomalies, including mental retardation. In this study, we examined whether Dyrk1A interacts with alpha-synuclein and subsequently affects intracellular alpha-synuclein inclusion formation in immortalized hippocampal neuronal (H19-7) cells. Dyrk1A selectively binds to alpha-synuclein in transformed and primary neuronal cells. Alpha-synuclein overexpression, followed by basic fibroblast growth factor-induced neuronal differentiation, resulted in cell death. We observed that accompanying cell death was increased alpha-synuclein phosphorylation and intracytoplasmic aggregation. In addition, the transfection of kinase-inactive Dyrk1A or Dyrk1A small interfering RNA blocked alpha-synuclein phosphorylation and aggregate formation. In vitro kinase assay of anti-Dyrk1A immunocomplexes demonstrated that Dyrk1A could phosphorylate alpha-synuclein at Ser-87. Furthermore, aggregates formed by phosphorylated alpha-synuclein have a distinct morphology and are more neurotoxic compared with aggregates composed of unmodified wild type alpha-synuclein. These findings suggest alpha-synuclein inclusion formation regulated by Dyrk1A, potentially affecting neuronal cell viability.  相似文献   

16.
Alpha-synuclein, a presynaptic protein, was found to be the major component in the Lewy bodies (LB) in an age-related neurodegenerative disease, Parkinson's disease (PD). Even though the function of alpha-synuclein is not completely understood, it has been demonstrated to spontaneously aggregate into amyloid fibrils. With the aim of inhibiting aggregate formation, a molecular chaperone protein, Hsp104p, was investigated since it rescues cells from stress by resolubilizing denatured proteins from insoluble aggregates, in vivo as well as in vitro. Here, in order to examine whether Hsp104p functions as a regulator of aggregate formation for alpha-synuclein, we expressed the His-tagged wild-type (wt) synuclein and the glutathione-S-transferase (GST)-tagged Hsp104p in bacterial systems. Using thioflavin-T fluorescence assays, significant protection against fibril formation was observed with wt Hsp104p regardless of the presence of ATP, but not with mutant Hsp104p. To a lesser extent, the dissociation effect of wild-type Hsp104p was observed only in the presence of ATP. Interaction between Hsp104p and synuclein was also investigated using a GST pull-down experiment. Interestingly, Hsp104p degraded alpha-synuclein in a concentration-dependent manner with the synergistic assistance of ATP. These results suggest that Hsp104p could be developed as a therapeutic candidate in the treatment of protein aggregation-related neurodegenerative disease.  相似文献   

17.
An increasing wealth of data indicates a close relationship between the presynaptic protein alpha-synuclein and Parkinson’s disease (PD) pathogenesis. Alpha-synuclein protein levels are considered as a major determinant of its neurotoxic potential, whereas secreted extracellular alpha-synuclein has emerged as an additional important factor in this regard. However, the manner of alpha-synuclein degradation in neurons remains contentious. Both the ubiquitin–proteasome system (UPS) and the autophagy–lysosome pathway (ALP)—mainly macroautophagy and chaperone-mediated autophagy—have been suggested to contribute to alpha-synuclein turnover. Additionally, other proteases such as calpains, neurosin, and metalloproteinases have been also proposed to have a role in intracellular and extracellular alpha-synuclein processing. Both UPS and ALP activity decline with aging and such decline may play a pivotal role in many neurodegenerative conditions. Alterations in these major proteolytic pathways may result in alpha-synuclein accumulation due to impaired clearance. Conversely, increased alpha-synuclein protein burden promotes the generation of aberrant species that may impair further UPS or ALP function, generating thus a bidirectional positive feedback loop leading to neuronal death. In the current review, we summarize the recent findings related to alpha-synuclein degradation, as well as to alpha-synuclein-mediated aberrant effects on protein degradation systems. Identifying the factors that regulate alpha-synuclein association to cellular proteolytic pathways may represent potential targets for therapeutic interventions in PD and related synucleinopathies.  相似文献   

18.
The accumulation of aggregated alpha-synuclein is thought to contribute to the pathophysiology of Parkinson's disease, but the mechanism of toxicity is poorly understood. Recent studies suggest that aggregated proteins cause toxicity by inhibiting the ubiquitin-dependent proteasomal system. In the present study, we explore how alpha-synuclein interacts with the proteasome. The proteasome exists as a 26 S and a 20 S species. The 26 S proteasome is composed of the 19 S cap and the 20 S core. Aggregated alpha-synuclein strongly inhibited the function of the 26 S proteasome. The IC(50) of aggregated alpha-synuclein for ubiquitin-independent 26 S proteasomal activity was 1 nm. Aggregated alpha-synuclein also inhibited 26 S ubiquitin-dependent proteasomal activity at a dose of 500 nm. In contrast, the IC(50) of aggregated alpha-synuclein for 20 S proteasomal activity was > 1 microm. This suggests that aggregated alpha-synuclein selectively interacts with the 19 S cap. Monomeric alpha-synuclein also inhibited proteasomal activity but with lower affinity and less potency. Recombinant monomeric alpha-synuclein inhibited the activity of the 20 S proteasomal core with an IC(50) > 10 microm, exhibited no inhibition of 26 S ubiquitin-dependent proteasomal activity at doses up to 5 microm, and exhibited only partial inhibition (50%) of the 26 S ubiquitin-independent proteasomal activity at doses up to 10 mm. Binding studies demonstrate that both aggregated and monomeric alpha-synuclein selectively bind to the proteasomal protein S6', a subunit of the 19 S cap. These studies suggest that proteasomal inhibition by aggregated alpha-synuclein could be mediated by interaction with S6'.  相似文献   

19.
Over the last decade, many genetic studies have suggested that the synucleins, which are small, natively unfolded proteins, are closely related to Parkinson’s disease and cancer. Less is known about the molecular basis of this role. A comprehensive analysis of the evolutionary path of the synuclein protein family may reveal the relationship between evolutionarily conserved residues and protein function or structure. The phylogeny of 252 unique synuclein sequences from 73 organisms suggests that gamma-synuclein is the common ancestor of alpha- and beta-synuclein. Although all three sub-families remain highly conserved, especially at the N-terminal, nearly 15% of the residues in each sub family clearly diverged during evolution, providing crucial guidance for investigations of the different properties of the members of the superfamily. His50 is found to be an alpha-specific conserved residue (91%) and, based on mutagenesis, evolutionarily developed a secondary copper binding site in the alpha synuclein family. Surprisingly, this site is located between two well-known polymorphisms of alpha-synuclein, E46K and A53T, which are linked to early-onset Parkinson’s disease, suggesting that the mutation-induced impairment of copper binding could be a mechanism responsible for alpha-synuclein aggregation.  相似文献   

20.
Aberrant phosphorylation of tau protein on serine and threonine residues has been shown to be critical in neurodegenerative disorders called tauopathies. An increasing amount of data suggest that tyrosine phosphorylation of tau might play an equally important role in pathology, with at least three putative tyrosine kinases of tau identified to date. It was recently shown that the tyrosine kinase Syk could efficiently phosphorylate alpha-synuclein, the aggregated protein found in Parkinson's disease and other synucleinopathies. We report herein that Syk is also a tau kinase, phosphorylating tau in vitro and in CHO cells when both proteins are expressed exogenously. In CHO cells, we have also demonstrated by co-immunoprecipitation that Syk binds to tau. Finally, by site-directed mutagenesis substituting the tyrosine residues of tau with phenylalanine, we established that tyrosine 18 was the primary residue in tau phosphorylated by Syk. The identification of Syk as a common tyrosine kinase of both tau and alpha-synuclein may be of potential significance in neurodegenerative disorders and also in neuronal physiology. These results bring another clue to the intriguing overlaps between tauopathies and synucleinopathies and provide new insights into the role of Syk in neuronal physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号