首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Expression of the DAL2, DAL4, DAL7, DUR1,2, and DUR3 genes in S. cerevisiae is induced by allophanate, the last intermediate in the allantoin catabolic pathway. Analysis of the DAL7 promoter identified a dodecanucleotide, the DAL7 UIS, which was required for inducer-responsiveness. Operation of the DAL7 UIS required functional DAL81 and DAL82 gene products. Since the DAL81 product was not an allantoin pathway-specific regulatory factor, the DAL82 product was considered as the more likely candidate to be the DAL UIS binding protein. Using an E. coli expression system, we showed that DAL82 protein specifically bound to wild type but not mutant DAL UIS sequences. DNA fragments containing DAL UIS elements derived from various DAL gene promoters bound DAL82 protein with different affinities which correlate with the degree of inducer-responsiveness the genes displayed.  相似文献   

2.
3.
4.
We demonstrate that the DAL5 gene, encoding a necessary component of the allantoate transport system, is constitutively expressed in Saccharomyces cerevisiae. Its relatively high basal level of expression did not increase further upon addition of allantoin pathway intermediates. However, steady-state DAL5 mRNA levels dropped precipitously when a repressive nitrogen source was provided. These control characteristics of DAL5 expression make this gene a good model with which to unravel the mechanism of nitrogen catabolite repression. Its particular advantage relative to other potentially useful genes derives from its lack of control by induction and hence the complicating effects of inducer exclusion.  相似文献   

5.
A positive regulatory sequence of the Saccharomyces cerevisiae ENO1 gene   总被引:5,自引:0,他引:5  
ENO1-'lacZ fusions with various lengths of the ENO1 5'-flanking region were constructed on various types of yeast plasmid vectors. The fully expressed level of beta Gal directed by ENO1-'lacZ fusions differed depending on the type of vector, but on any type of vector, beta Gal activity was not greatly influenced by the carbon source in the medium. The 86-bp DNA region of ENO1 at position -487 to -402 upstream of the initiation codon, in which we had previously delimited the positive regulatory region of ENO1 (Uemura, H., Shiba, T., Paterson, M., Jigami, Y., & Tanaka, H. (1986) Gene 45, 67-75), exerted its function without requiring precise location with respect to the TATA box. The action of the positive regulatory region was not affected by its orientation. In addition, the substitution of the UASs of PHO5, encoding repressible acid phosphatase, with the regulatory region of ENO1 changed the expression of PHO5-'lacZ gene to constitutive, irrespective of the concentration of inorganic phosphate in the medium. Furthermore, the GCR1 gene cloned in a multicopy plasmid increased the expression of the ENO1-'lacZ fused genes.  相似文献   

6.
7.
We demonstrate that the DAL81 gene, previously thought to be specifically required for induced expression of the allantoin pathway genes in Saccharomyces cerevisiae, functions in a more global manner. The data presented show it to be required for utilization of 4-aminobutyrate as a nitrogen source and for 4-aminobutyrate-induced increases in the steady-state levels of UGA1 mRNA. The DAL81 gene encodes a 970-amino-acid protein containing sequences homologous to the Zn(II)2Cys6 motif and two stretches of polyglutamine residues. Deletion of sequences homologous to the Zn(II)2Cys6 motif did not result in a detectable loss of function. On the other hand, loss of one of the polyglutamine stretches, but not the other, resulted in a 50% loss of DAL81 function.  相似文献   

8.
We have screened a yeast genomic library for complementation of the UV sensitivity of mutants defective in the RAD1 gene and isolated a plasmid designated pNF1000 with an 8.9-kilobase insert. This multicopy plasmid quantitatively complemented the UV sensitivity of two rad1 mutants tested but did not affect the UV resistance of other rad mutants. The location of the UV resistance function in pNF1000 was determined by deletion analysis, and an internal fragment of the putative RAD1 gene was integrated into the genome of a RAD1 strain. Genetic analysis of several integrants showed that integration occurred at the chromosomal RAD1 site, demonstrating that the internal fragment was derived from the RAD1 gene. A 3.88-kilobase region of pNF1000 was sequenced and showed the presence of a small open reading frame 243 nucleotides long that is apparently unrelated to RAD1, as well as a 2,916-nucleotide larger open reading frame presumed to encode RAD1 protein. Depending on which of two possible ATG codons initiates translation, the size of the RAD1 protein is calculated at 110 or 97 kilodaltons.  相似文献   

9.
The CDC6 gene product is required for entering the S phase of the cell cycle in Saccharomyces cerevisiae. It has been isolated on recombinant plasmids by selection for complementation of temperature-sensitive alleles with a yeast genomic library. The entire complementing activity is carried on a 1.8-kilobase chromosomal DNA fragment, as revealed by deletion mapping. Northern blotting shows that the size of the CDC6 mRNA is about 1.7 kilobases. A Southern blot of yeast chromosomes which were separated by the field inversion gel electrophoresis method indicates that the isolated DNA fragment is derived from chromosome X. The locus from which the clone was derived was marked by integration with a nutritional marker and found by meiotic mapping to cosegregate with CDC6. Thus, we conclude that we have isolated the authentic CDC6 gene. Nucleotide sequence analysis of the CDC6 gene has revealed an open reading frame that encodes a protein with Mr = 57,969. There are five potential Asn-X-(Ser/Thr) glycosylation sites and a highly conserved nucleotide-binding site in the CDC6 sequence. Although computer surveys indicate overall sequence homology between S. cerevisiae CDC6 protein and Saccharomyces pombe CDC10 START protein, they may not be functionally equivalent as evaluated by the complementation assay.  相似文献   

10.
This report describes the isolation of the genes encoding allantoicase (DAL2) and ureidoglycolate hydrolase (DAL3), which are components of the large DAL gene cluster on the right arm of chromosome IX of Saccharomyces cerevisiae. During this work a new gene (DAL7) was identified and found to be regulated in the manner expected for an allantoin pathway gene. Its expression was (i) induced by allophanate, (ii) sensitive to nitrogen catabolite repression, and (iii) responsive to mutation of the DAL80 and DAL81 loci, which have previously been shown to regulate the allantoin degradation system. Hybridization probes generated from these cloned genes were used to analyze expression of the allantoin pathway genes in wild-type and mutant cells grown under a variety of physiological conditions. When comparison was possible, the patterns of mRNA and enzyme levels observed in various strains and physiological conditions were very similar, suggesting that the system is predominantly regulated at the level of gene expression. Although all of the genes seem to be controlled by a common mechanism, their detailed patterns of expression were, at the same time, highly individual and diverse.  相似文献   

11.
We isolated a mutant of Saccharomyces cerevisiae defective in the formation of phosphatidylcholine via methylation of phosphatidylethanolamine. The mutant synthesized phosphatidylcholine at a reduced rate and accumulated increased amounts of methylated phospholipid intermediates. It was also found to be auxotrophic for inositol and allelic to an existing series of ino4 mutants. The ino2 and ino4 mutants, originally isolated on the basis of an inositol requirement, are unable to derepress the cytoplasmic enzyme inositol-1-phosphate synthase (myo-inositol-1-phosphate synthase; EC 5.5.1.4). The INO4 and INO2 genes were, thus, previously identified as regulatory genes whose wild-type product is required for expression of the INO1 gene product inositol-1-phosphate synthase (T. Donahue and S. Henry, J. Biol. Chem. 256:7077-7085, 1981). In addition to the identification of a new ino4-allele, further characterization of the existing series of ino4 and ino2 mutants, reported here, demonstrated that they all have a reduced capacity to convert phosphatidylethanolamine to phosphatidylcholine. The pleiotropic phenotype of the ino2 and ino4 mutants described in this paper suggests that the INO2 and INO4 loci are involved in the regulation of phospholipid methylation in the membrane as well as inositol biosynthesis in the cytoplasm.  相似文献   

12.
13.
14.
Farnesyl diphosphate (FPP) synthetase is a key enzyme in isoprenoid biosynthesis which supplies C15 precursors for several classes of essential metabolites including sterols, dolichols, and ubiquinones. The structural gene for FPP synthetase was isolated on a 4.5-kilobase EcoRI genomic restriction fragment from the yeast Saccharomyces cerevisiae. The clone encodes a 40,483-dalton polypeptide of 342 amino acids with a high degree of similarity to the protein encoded by a putative rat liver clone of FPP synthetase (Clarke, C. F., Tanaka, R. D., Svenson, K., Wamsley, M., Fogelman, A. M., and Edwards, P. A. (1987) Mol. Cell Biol. 7, 3138-3146) and to an active site protein fragment from avian liver FPP synthetase (Brems, D. N., Bruenger, E., and Rilling, H. C. (1981) Biochemistry 20, 3711-3718). When cloned into the yeast shuttle vector YRp17, the 4.5-kilobase EcoRI fragment directed a 2-3-fold over-expression of FPP synthetase activity in transformed yeast cells. The levels of expression were independent of culture growth phase and orientation of the insert, indicative of a functional promoter in the clone. Disruption of the FPP synthetase gene from a diploid yeast strain, followed by dissection and analysis of tetrads, demonstrates that the gene is an essential, single copy number gene in yeast. The gene for FPP synthetase resides on chromosome XI as judged from Southern blots of separated yeast chromosomes.  相似文献   

15.
A new centromere vector for the construction of a Saccharomyces cerevisiae gene library, allowing direct selection for DNA insert, will be described. From that library the gene for the regulatory protein PHO2 involved in PHO5 induction has been cloned by complementation of a pho2 mutation. The complementing activity was shown to be located on a 3.6 kb HindIII fragment. This fragment was used to evict the genomic copy and with appropriate genetic crosses we proved, that the cloned gene is PHO2. The DNA sequence of PHO2 was determined. Analysis of the sequence data uncovered striking homology regions with PHO4, another protein necessary for the induction of PHO5. The relevance of the observed homology will be discussed.  相似文献   

16.
H Uemura  T Shiba  M Paterson  Y Jigami  H Tanaka 《Gene》1986,45(1):67-75
A DNA fragment which contains the 5'-flanking region of the Saccharomyces cerevisiae enolase 1 gene (ENO1) and a portion of the coding sequence was cloned in a plasmid pMC1587. This fragment was fused in frame to the lacZ gene of Escherichia coli. Many mutants which deleted a portion of the 5'-flanking region of ENO1 were isolated from this ENO1-lacZ fusion plasmid by in vitro recombination. Analysis of beta-galactosidase activity of these mutants indicated that the regulatory region responsible for an efficient expression of the ENO1-lacZ fused gene resides within an 86-bp sequence located at -487 to -402 upstream from the start codon of ENO1. We found that the segment encompassing the 86-bp region worked equally well in an inverted orientation, but the tandem duplication of the sequence did not enhance the expression of the fused gene.  相似文献   

17.
18.
Nucleotide sequence of the CLS4 (CDC24) gene of Saccharomyces cerevisiae   总被引:22,自引:0,他引:22  
S Miyamoto  Y Ohya  Y Ohsumi  Y Anraku 《Gene》1987,54(1):125-132
The nucleotide sequence of the CLS4 gene controlling Ca2+ regulatory process of bud emergence, which was cloned previously [Ohya et al., J. Bacteriol. 165 (1986) 28-33], was determined. The CLS4 (CDC24) locus encodes a protein consisting of 736 amino acid (aa) residues with an Mr of 83,970. By primer extension mapping, the mRNA start point was located 139 bp upstream from the translation start codon. The predicted CLS4 protein was hydrophilic with two serine + threonine-rich domains in the middle and C-terminal regions. It has two putative Ca2+-binding regions, one being partly homologous to the Ca2+-binding domain of the S-100a protein and the other that of alpha-lactalbumin.  相似文献   

19.
P Tekamp-Olson  R Najarian  R L Burke 《Gene》1988,73(1):153-161
We have isolated the gene which encodes the glycolytic enzyme phosphoglucoisomerase (PGI) from the yeast Saccharomyces cerevisiae by functional complementation of a yeast mutant deficient in PGI activity with DNA from a wild-type yeast genomic library. The cloned gene has been localized by hybridization of specific DNA fragments to total yeast poly(A)+ RNA and by complementation of the mutant phenotype with subclones. The gene is expressed as an abundant mRNA of 1.9-kb and encodes a protein of 554 amino acids with an Mr of 61310. The nucleotide sequence of the gene as well as the 5' and 3' flanking regions are presented. The predicted PGI amino acid sequence shows a high degree of homology with the sequence predicted for human and mouse neuroleukin, a putative neurotropic factor. The codon usage within the coding region is very restricted, characteristic of a highly expressed yeast gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号