首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helix aspersa hibernates in Brittany (western France), where it may experience subzero temperatures. Studies on cold hardiness, although scarce in land snails, have shown a seasonal variation in supercooling ability, associated with high temperatures of crystallization (Tc). In the present work, two key environmental factors, temperature and photoperiod, were studied to elucidate, how they may affect the enhancement of supercooling ability in the snails from the end of summer to winter. Nine groups of adult snails were acclimated to different combinations of photoperiod (LD-16:8, LD-12:12, and LD-8:16 h) and temperature (15, 10, and 5°C). Temperature of crystallization, hemolymph osmolality, and water content were measured. The results demonstrate a significant effect of the photoperiod on Tc, i.e., shorter photoperiods induce lower Tc (LD-16:8 h, mean Tc = −3.0°C, SD = 2.0; LD-12:12 h, mean Tc = −4.3°C, SD = 1.9; LD-8:16 h, mean Tc = −5.2°C, SD = 1.9; n = 90), whereas the acclimation temperature had no effect. Measurements of hemolymph osmolality and water content showed that osmolality is negatively correlated with water content. Mechanisms such as dehydration are involved in the decrease of Tc. A declining photoperiod triggers a lower Tc, long before the onset of winter conditions. This response may have an adaptive component, allowing individuals to cope with the mild winters typically observed in oceanic regions.  相似文献   

2.
The land snail Helix pomatia (Gastropoda: Helicidae) is widely distributed in Northern and Central Europe where it may experience subzero temperatures during winter months. Its supercooling ability was studied in two populations of H. pomatia. One population originated from Southern Sweden (Gotaland) and the other from Central France (Auvergne). In the experimental design, they were acclimated, over 2 weeks, to artificial winter conditions (hibernation, T=5 degrees C). The Swedish snails showed a rather limited supercooling ability (temperature of crystallization, T(c)=-6.4+/-0.8 degrees C), significantly greater, however, than the supercooling capacity of the population from France (T(c)=-4.6+/-1.4 degrees C). In artificial spring conditions (3 months of hibernation followed by a progressive acclimation, over 2 weeks, to activity at T=20 degrees C), both populations exhibited a similar high T(c) (-2.0+/-1.0 degrees C). The lower T(c) of hibernating Swedish snails could be due to a greater loss of body water, accompanied by a higher concentration of solutes in the hemolymph. In both populations, the variation in hemolymph osmolality measured between hibernating (250-270 mOsm kg(-1)) and active (165-215 mOsm kg(-1)) snails may be explained by the variation in body water mass and did not suggest the production of colligative cryoprotectants. Moreover, the three bacterial strains, Buttiauxella sp., Kluyvera sp., and Tatumella sp. (Enterobacteriaceae) which were isolated from fed snails, but absent in starved snails, did not show any ice-nucleating activity at temperatures higher than -9 degrees C. Only the strain Kluyvera sp. initiated nucleation at -9 degrees C. This strain, therefore, is a weak, also termed a Type III or Class C ice-nucleating active bacterium, but with no influence on the supercooling ability of individual snails. In summary, fluctuations in body water mass of hibernating snail populations, triggering changes in osmolyte concentration, rather than the presence of endogenous ice-nucleating-active bacteria, accounts for fluctuations in their T(c).  相似文献   

3.
The invasive land snail Cornu aspersum possesses a low ability to supercool (c. -5 degrees C in winter) and survives only minimal ice formation in its body fluids, what may limit its expansion to colder environments. In the present study, we investigated the influence of acclimation and starvation on its supercooling ability. During eight weeks, individuals were maintained at 20 degrees C, fed or starved, or placed at 5 degrees C, directly or with progressive acclimation to cold and shorter photoperiod. Temperature of crystallisation of whole individual (Tc(I)) and hemolymph (Tc(H)), mass data and gut content were recorded every two weeks. Hemolymphatic glucose and glycerol were measured at the end of experiment and occurrence of intestinal ice-nucleating agents (INA) was researched. Acclimation had no effect on Tc(I) but stimulated purging of the gut. Starvation induced a slight decrease of Tc(I) whereas a high quantity of alimentary particles in the digestive tract limited the supercooling ability. Glucose and glycerol were not synthesized in cold conditions. Mean Tc(H) was low (c. -17 degrees C), some INA being present in hemolymph of fed animals. Intestinal content of starved individuals exhibited a mean Tc of c. -6 degrees C, decreasing to c. -12 degrees after heating, suggesting the presence of organic INA.  相似文献   

4.
Watanabe M 《Cryobiology》2000,40(4):294-301
Effects of photoperiod and temperature on the development and cold hardiness were investigated in larvae of Hypera punctata. At a relatively low temperature (15 degrees C), the larvae fed less and developed more slowly under a 12L:12D (SD) photoperiod than under a 16L:8D photoperiod (LD). SD larvae had lower gut weight against the whole body weight and lower supercooling point (SCP) than the LD counterparts for the same instar and same body weight. This was because the larval SCP is markedly affected by the quantity of the gut content. Laboratory experiments indicated that the low temperature mortality of this larvae occurred mainly due to freezing irrespective of the photoperiod and temperature, suggesting that the lower lethal temperature (LLT) depends on the supercooling ability of larvae. The SD larvae tended to have a lower SCP and hence a lower LLT than the LD counterparts at 15 or 10 degrees C, unlike at 20 degrees C. Thus, the slower larval development under SD conditions at relatively low temperatures may prevent larvae from reaching the later instar, which have a higher SCP and thus less cold tolerance, during the coldest season. The suppressed feeding activity under SD conditions would lower the SCP, thereby reducing the possibility of lethal tissue freezing. Such a photoperiodic and thermal regulation of the larval development and the supercooling ability appear to represent adaptive mechanisms for winter survival in this beetle.  相似文献   

5.
The land snail Helix aspersa can be considered partially tolerant to freezing, in the sense it can survive some ice formation within its body for a limited time, and possesses a limited ability to supercool. This study aimed at understanding what factors are responsible for the variation of the temperature of crystallization ( Tc) in a littoral temperate population. The ability to supercool was maximal (ca. -5 degrees C) during dormancy periods (hibernation and aestivation) and minimal (ca. -3 degrees C) during spring and autumn, in relation with the decrease of water mass and the increase of osmolality. Tc decreased in October to remain stable through late autumn and winter; it increased quickly with the awakening of animals in April. Snails with an epiphragm had a significantly higher ability to supercool (ca. -4.8 degrees C) than snails which did not form an epiphragm (ca. -4.2 degrees C). The animals' size had a weak but significant influence on the realization of the Tc. It appeared that there was not a real cold-hardiness strategy in this population; rather a sum of parameters, varying in consequences of the external conditions and of the activity cycle, which are responsible for the enhancement of the supercooling ability during winter.  相似文献   

6.
Effects of photoperiod and temperature on the development and cold hardiness were investigated in larvae of Hypera punctata. At a relatively low temperature (15°C), the larvae fed less and developed more slowly under a 12L:12D (SD) photoperiod than under a 16L:8D photoperiod (LD). SD larvae had lower gut weight against the whole body weight and lower supercooling point (SCP) than the LD counterparts for the same instar and same body weight. This was because the larval SCP is markedly affected by the quantity of the gut content. Laboratory experiments indicated that the low temperature mortality of this larvae occurred mainly due to freezing irrespective of the photoperiod and temperature, suggesting that the lower lethal temperature (LLT) depends on the supercooling ability of larvae. The SD larvae tended to have a lower SCP and hence a lower LLT than the LD counterparts at 15 or 10°C, unlike at 20°C. Thus, the slower larval development under SD conditions at relatively low temperatures may prevent larvae from reaching the later instar, which have a higher SCP and thus less cold tolerance, during the coldest season. The suppressed feeding activity under SD conditions would lower the SCP, thereby reducing the possibility of lethal tissue freezing. Such a photoperiodic and thermal regulation of the larval development and the supercooling ability appear to represent adaptive mechanisms for winter survival in this beetle.  相似文献   

7.
The effects of temperature on survival, infectivity and in vitro encystment of Echinostoma caproni cercariae in artificial spring water (ASW) were studied. Effects of aging cercariae in ASW at various temperatures showed that at 23 degrees C cercariae achieved 50% survival in 24 h, compared to 92 h at 12 degrees C. Cercariae aged in ASW at 28 and 37.5 degrees C showed 50% survival at 16 and 10 h, respectively. Cercariae aged at different temperatures for various times were used to infect juvenile Helisoma trivolvis (Colorado strain) snails maintained in ASW at 23 degrees C. Index of infectivity was based on counting encysted metacercariae in the snails at 8 to 12 h post-infection. Cercariae aged at 23, 28 and 37.5 degrees C showed 50% encystment at 6, 8 and 4 h, respectively. Cercariae aged at 4 degrees C showed 50% encystment in 10 h and cercariae aged at 12 degrees C showed 50% encystment beyond 16 h. Cercariae showed maximal longevity and infectivity in snails when aged at 12 degrees C in ASW. For E. caproni, as in other digeneans, the infective period of cercariae is markedly shorter than the maximal life-span at any given temperature. Studies on in vitro encystment of E. caproni cercariae in Locke's solution:ASW (1:1) showed that encystment was optimal at 23 degrees C (78% encystment) and that it declined to 44% at 28 degrees C and became almost nil (0.02%) at 12 or 37.5 degrees C.  相似文献   

8.
Prediction formulae of shivering metabolism (Mshiv) are critical to the development of models of thermoregulation for cold exposure, especially when the extrapolation of survival times is required. Many such formulae, however, have been calibrated with data that are limited in their range of core temperatures (Tc), seldom involving values of less than 36 degrees C. Certain recent studies of cold-water immersion have reported Tc as low as 33.25 degrees C. These data comprise measurements of Tc (esophageal) and mean skin temperature (Ts), and metabolism from 14 males [mean (SD); age = 28 (5) years; height = 1.78 (0.06) m; body mass = 77.7 (6.9) kg; body fat (BF) = 18.4 (4.5)%] during immersion in water as cold as 8 degrees C for up to 1 h and subsequent self-rewarming via shivering under dry blanketed conditions. The data contain 3343 observations with mean (SD) Tc and Ts of 35.92 (0.93) degrees C and 23.4 (8.9) degrees C, respectively, and have been used to re-examine the prediction of Mshiv. Rates of changes of these temperatures were not used in the analysis. The best fit of the formulae, which are essentially algebraic constructs with and without setpoints, are those with a quadratic expression involving Ts. This is consistent with the findings of Benzinger (1969) who demonstrated that the thermosensitivity of skin is parabolic downwards with temperature peaking near a value of 20 degrees C. Formulae that included a multiplicative interaction term between Tc and Ts did not predict as well. The best prediction using 37 degrees C and 33 degrees C as the Tc and Ts setpoints, respectively, was found with BF as an attenuation factor: Mshiv (W x m(-2)) = [155.5 x (37- Tc) + 47.0 x (33 - Ts) - 1.57 x (33 - Ts)2]/(%BF)(0.5).  相似文献   

9.
The thermal preference of the freshwater snail Lymnaea auriculria (Gastropoda: Pulmonata), measured 49 times over 3 years, oscillated around a mean of 19·3°C, with an amplitude of 13·4°C. This oscillation was significantly phase-linked to both the natural photoperiod and natural ambient temperature. Lymnaea hatched and maintained in constant conditions of temperature (21°C) and photoperiod (12 h) over 2 years showed a constant thermal preference of 19·8±1·4°C. The preference was maintained between 19·5 and 20·4°C when the snails were kept at 5, 15, 20 and 27°C and in photoperiods of 8 and 16 h. In a changing artificial photoperiod which followed an annual cycle, the preference fluctuated about a mean of 19·3°C with an amplitude of 3·9°C. When the photoperiod was constant but the temperature oscillated the preference remained constant. Thus the circannual cycle seems to be an exogenous oscillation entrained by the photoperiod.  相似文献   

10.
Snails were kept in self-cleaning housing chambers in an artificially controlled environment. Mating was frequent under long days (18 h light) and rare under short days (8 h light) regardless of whether the snails were kept at 15 degrees C or 20 degrees C. An interaction between photoperiod and temperature was observed for egg laying. The number of eggs laid (45-50/snail) and the frequency of egg laying (90-130%) were greater in long than in short days (16-35/snail and 27-77%) but a temperature of 20 degrees C redressed, to some extent, the inhibitory effect of short days. At both temperatures only long photoperiods brought about cyclic reproduction over a period of 16 weeks, confirming the synchronizing role of photoperiod on the neuroendocrine control of egg laying in this species of snail.  相似文献   

11.
ABSTRACT. Pseudaletia unipuncta (Haw.) (Lepidoptera: Noctuidae) virgin females, maintained at either 10 or 25d?C under LD 12:12 or 16:8 h, started calling at different ages. For a given photoperiod, calling was initiated 11 days later at 10d?C than at 25d?C, while for a given temperature, calling at LD 12:12 h was 3–4 days later than at LD 16:8 h. At 10d?C 50.8% of females did not call within 35 days at LD 12:12 h compared with 30.8% at LD 16:8 h. Calling started earlier in the scotophase at 10d?C than at 25d?C and at LD 16:8 h than at LD 12:12 h. Under all treatments calling generally advanced on successive nights. The time elapsed between the mean onset time of calling and the mid-scotophase was relatively constant under both photoperiod conditions at 25d?C, but at 10d?C was more variable. The mean time spent calling increased significantly with calling age but did not differ significantly between the four experimental conditions tested. Older (15 days) females transferred from 10d?C, LD 16:8 h to 25d?C at either LD 163 or 12:12 h, required less time to initiate calling than younger (5 days) ones. Those transferred from 10d?C, LD 12:12 h took the same time, regardless of their age at the time of the transfer. Females experiencing either a decrease or increase in daylength as well as a temperature increase, required respectively more or less time to initiate calling, compared with individuals that only experienced an increase in temperature. If temperature was the only parameter changed females that initiated calling soon after the transfer immediately adjusted their calling periodicity to prevailing conditions. When both temperature and photoperiod were altered, it took several days before calling periodicity adjusted to the new regime. The ecological implications of temperature and photoperiodic conditions on the possible autumn migration of P. unipuncta are discussed.  相似文献   

12.
The effects of artificial photoperiod, temperature, and long-term testosterone treatment on testicular luteinizing hormone (LH) binding were studied in adult male Djungarian hamsters. In hamsters transferred to long-day (LD; 16 hr light, 8 hr dark) photoperiod 8 weeks after adaptation in short-day (SD; 8 hr light, 16 hr dark) photoperiod of 25 degrees C, testicular growth was associated with an increase in the total LH binding per two testes and a decrease in LH binding per unit testicular weight. Plasma testosterone levels reached a peak 47 days after transfer to LD and tended to decrease thereafter, while the testes continued growing. In contrast, when hamsters reared under LD conditions at 25 degrees C for 12 weeks were transferred to SD, testicular regression was associated with a decrease in plasma testosterone and the total LH binding per two testes and an increase in LH binding per unit testicular weight. A significant decrease in LH binding per unit weight compared to SD controls was observed in those hamsters exposed to SD with continuous testosterone treatment. The testosterone treatment tended to induce decrease in the total LH binding. Scatchard plot analyses of the binding suggested that changes in LH binding were due to changes in the number of binding sites. When sexually mature male hamsters were subjected for 8 weeks to two different ambient temperatures (7 degrees C and 25 degrees C) and photoperiods (LD and SD), the difference between the two temperature groups was statistically not significant regarding the weights of testes, epididymides, and prostates; plasma testosterone levels; and LH binding in either LD or SD group. These results suggest that photoperiod is a more important environmental factor than temperature for the regulation of testicular activity and LH receptors and that testosterone reduces the number of LH receptors per unit testicular weight in adult male Djungarian hamsters.  相似文献   

13.
The Karoo Paralysis tick, Ixodes rubicundus Neumann (Acari: Ixodidae), is a semi-voltine ixodid that survives stressful environmental conditions using morphogenetic diapause (eggs and engorged nymphs) and desiccation resistance. Both photoperiod and temperature influence diapause induction in the engorged nymph. Ixodes rubicundus nymphs are typical long-day photoperiodic organisms. The critical photoperiod is approximately 13.5 h light, 10.5 h dark, and they display a thermolabile response. The period between detachment and apolysis in engorged nymphs is modified by photoperiod; however, apolysis to ecdysis is not affected by photoperiod. Thus, initiation of development, but not the actual process is controlled by photoperiod. Most engorged nymphs delayed metamorphosis when exposed to short-day regimen (LD 12 : 12 h) after feeding. Nymphs exposed to pre- and post-feeding long-day regimen (LD 14 : 10 h) developed. Times for 50% of nymphs to apolyse when exposed to photoperiods of LD 14 : 10 h, 13.5 : 10.5 h, 13 : 11 h and 12 : 12 h were 28, 36, 40 and 58 days, respectively. Times for 50% of engorged nymphs to ecdyse ranged from 38 to 40 days after apolysis. Nymphs were sensitive to photoperiodic exposures before, during and after feeding. Nymphs exposed to long day (LD 14 :10 h) before and during feeding, moulted at 20 degrees C; however, most exposed to 10 degrees C followed by 20 degrees C (post-feeding) went into diapause. Both short- (10 : 14 h) and long- (14 : 10 h) day exposed engorged nymphs survived 45 days at 0% r.h. (n = 73), but diapause-destined ticks kept at 13 degrees C lost the least mass (29.5+/-9.5%, SD), while nondiapause ticks at 23 degrees C lost the most (48.7+/-8.2%, SD). Termination of diapause and transition to development probably coincides with a definite increase of water vapour uptake by engorged nymphs. Comparatively, I. rubicundus engorged nymphs are more desiccation tolerant than a North-American counterpart, Amblyomma cajennense (Fabricius) (Acari: Ixodidae), which is also semi-arid- to xeric-adapted. Diapause conveys important survival attributes that enable engorged I. rubicundus nymphs to inhabit a semi-arid environment with great temperature extremes, and to synchronize their activity periods with seasons and host utilization patterns.  相似文献   

14.
By cooling the hypothalamus during hyperthermia, selective brain cooling reduces the drive on evaporative heat loss effectors, in so doing saving body water. To investigate whether selective brain cooling was increased in dehydrated sheep, we measured brain and carotid arterial blood temperatures at 5-min intervals in nine female Dorper sheep (41 +/- 3 kg, means +/- SD). The animals, housed in a climatic chamber at 23 degrees C, were exposed for nine days to a cyclic protocol with daytime heat (40 degrees C for 6 h). Drinking water was removed on the 3rd day and returned 5 days later. After 4 days of water deprivation, sheep had lost 16 +/- 4% of body mass, and plasma osmolality had increased from 290 +/- 8 to 323 +/- 9 mmol/kg (P < 0.0001). Although carotid blood temperature increased during heat exposure to similar levels during euhydration and dehydration, selective brain cooling was significantly greater in dehydration (0.38 +/- 0.18 degrees C) than in euhydration (-0.05 +/- 0.14 degrees C, P = 0.0008). The threshold temperature for selective brain cooling was not significantly different during euhydration (39.27 degrees C) and dehydration (39.14 degrees C, P = 0.62). However, the mean slope of lines of regression of brain temperature on carotid blood temperature above the threshold was significantly lower in dehydrated animals (0.40 +/- 0.31) than in euhydrated animals (0.87 +/- 0.11, P = 0.003). Return of drinking water at 39 degrees C led to rapid cessation of selective brain cooling, and brain temperature exceeded carotid blood temperature throughout heat exposure on the following day. We conclude that for any given carotid blood temperature, dehydrated sheep exposed to heat exhibit selective brain cooling up to threefold greater than that when euhydrated.  相似文献   

15.
Summary

A study was made of the interaction of the photoperiod and the availability of food in influencing egg laying of the freshwater snail Lymnaea stagnalis. At a long day photoperiod (LD = 16 h light/8 h dark) egg laying of fed snails had increased compared with that of fed animals kept at a medium day photoperiod (MD = 12 h light/12 h dark). In MD snails oviposition ceased within a week of the beginning of a starvation period. This is most probably due to a reduction in the activities of the neuroendocrine caudodorsal cells which secrete an ovulation hormone. In contrast, in starved LD snails a low rate of ovipository activity continued, indicating that a lowered frequency of caudodorsal cell release cycles occurred under these conditions. The decreased mean size (number of eggs) of the egg masses in starved LD snails indicates that the activities of the endocrine dorsal bodies, which control vitellogenesis and synthetic activities in the female accessory sex organs, had decreased.

All MD snails survived, but nearly all LD snails died during the course of the experiment. Determinations of the mantle glycogen stores of LD snails suggest that the high mortality of LD snails is due to exhaustion of the animal's energy reserves.  相似文献   

16.
The present study examined the effects of photoperiod on spatial and temporal memory in adult Sprague-Dawley rats that were conceived and reared in different day lengths, i.e., short day (SD-8:16 light/dark) and long day (LD-16:8 light/dark). Both male and female LD rats demonstrated increased spatial memory capacity as evidenced by a lower number of choices to criterion in a 12-arm radial maze task relative to the performance of SD rats. SD rats also demonstrated a distortion in the content of temporal memory as evidenced by a proportional rightward shift in the 20 and 60 s temporal criteria trained using the peak-interval procedure that is consistent with reduced cholinergic function. The conclusion is that both spatial and temporal memory are sensitive to photoperiod variation in laboratory rats in a manner similar to that previously observed for reproductive behaviour.  相似文献   

17.
W A Riddle  S Pugach 《Cryobiology》1976,13(2):248-253
Lower lethal temperatures represented by supercooling points were measured for the scorpion Paruroctonus aquilonalis (Stahnke) following exposure to laboratory regimes of photoperiod and temperature, as well as to ambient conditions. Analyses for the presence of glycerol and sorbitol in hemolymph, and of body water content were also performed.Laboratory results indicated that neither decreasing photoperiod nor decreasing temperature influenced supercooling point in a meaningful way. However, supercooling points did decrease significantly during the fall and winter among scorpions maintained outdoors, indicating development of cold hardiness. Neither glycerol nor sorbitol were detected, nor were the slight seasonal decreases found in water content considered sufficient to influence supercooling point.Ability to avoid winter freezing in P. aquilonalis appears primarily conferred by substantial seasonal depression of the supercooling point and is temporally associated with cessation of feeding in the fall. Supercooling responses were compared with those of another scorpion, Diplocentrus spitzeri, and differences tentatively were explained in terms of feeding activity.  相似文献   

18.
Changes in temperature and daylength trigger physiological and seasonal developmental processes that enable evergreen trees of the boreal forest to withstand severe winter conditions. Climate change is expected to increase the autumn air temperature in the northern latitudes, while the natural decreasing photoperiod remains unaffected. As shown previously, an increase in autumn air temperature inhibits CO2 assimilation, with a concomitant increased capacity for zeaxanthin-independent dissipation of energy exceeding the photochemical capacity in Pinus banksiana. In this study, we tested our previous model of antenna quenching and tested a limitation in intersystem electron transport in plants exposed to elevated autumn air temperatures. Using a factorial design, we dissected the effects of temperature and photoperiod on the function as well as the stoichiometry of the major components of the photosynthetic electron transport chain in P. banksiana. Natural summer conditions (16-h photoperiod/22 degrees C) and late autumn conditions (8-h photoperiod/7 degrees C) were compared with a treatment of autumn photoperiod with increased air temperature (SD/HT: 8-h photoperiod/22 degrees C) and a treatment with summer photoperiod and autumn temperature (16-h photoperiod/7 degrees C). Exposure to SD/HT resulted in an inhibition of the effective quantum yield associated with a decreased photosystem II/photosystem I stoichiometry coupled with decreased levels of Rubisco. Our data indicate that a greater capacity to keep the primary electron donor of photosystem I (P700) oxidized in plants exposed to SD/HT compared with the summer control may be attributed to a reduced rate of electron transport from the cytochrome b6f complex to photosystem I. Photoprotection under increased autumn air temperature conditions appears to be consistent with zeaxanthin-independent antenna quenching through light-harvesting complex II aggregation and a decreased efficiency in energy transfer from the antenna to the photosystem II core. We suggest that models that predict the effect of climate change on the productivity of boreal forests must take into account the interactive effects of photoperiod and elevated temperatures.  相似文献   

19.
ABSTRACT. Imagines of Drosophila auraria Peng, a reproductive diapause species, developed cold-hardiness at low temperatures to a greater extent when exposed to a diapause-inducing photoperiod (LD10:14 h) than when exposed to a diapause-preventing photoperiod (LD 16:8h). Imagines kept at 18°C, which was the temperature at which they were reared to eclosion, did not survive a test exposure to -5°C for 8 days regardless of age or photoperiod. When transferred to 10 or 5°C, either from eclosion or from 8 days after eclosion, the survival rate, on testing, rose with time since transfer and rose faster and higher with a photoperiod of LD 10:14h than with LD16:8h. Flies transferred to 15°C only showed improved ability to survive the test if they were kept in LD 10:14h. When cultured at 18°C to the age of 8 days after eclosion, diapause was terminated in about 30% of females even at LD 10:14h. In these post-diapause females the ability to develop cold-hardiness at lower temperatures was somewhat less than in the diapausing females, but apparently greater than in the non-diapause females. These results suggest that the physiological mechanism which promotes cold-hardiness under a diapause-inducing photoperiod is not directly linked to the process causing reproductive diapause.
In Sapporo, flies from a natural population became tolerant to cold in October when they entered diapause and daily mean temperature fell below 15°C and the light/dark cycle fell below LD 12:12h.  相似文献   

20.
Abstract Adults of Pyrrhocoris apterus (L.) (Heteroptera: Pyrrhocoridae) reared at 26°C had a considerably lower supercooling point (SCP) in diapause-inducing (LD 12:12 h) than in diapause-inhibiting (LD 18:6 h) photoperiodic regimes. Exposure of the insects to diapause-inducing acclimation conditions (LD 8:16 h and a temperature of 20°C during photophase and 5°C during scotophase) for 2–3 weeks had very little effect on the SCP, irrespective of the rearing photoperiod. Allatectomized adults kept continuously at LD 18:6 h and 26°C had high SCP similar to intact or sham-operated insects. In contrast to non-allatectomized insects, the SCP of allatectomized insects decreased after an exposure of from 2 to 3 weeks to diapause-inducing acclimation conditions (see above) almost to the level found in the intact diapausing insects. The relationship between the decrease of SCP and ‘diapause syndrome’ (de Wilde, 1970) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号