首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文详细描述了菱臼齿兽耳区各个部分的基本结构;并指出了耳区结构与某些啮齿类的相似性,以及中耳鼓泡组成成份与戈壁(犭亚)兽(Anagale gobiensis)的区别。  相似文献   

2.
本文就以下几方面对我国植物生态学和地植物学作了回顾与展望。一、回顾:1.亚热带和热带森林区的植被研究。2.温带森林区的植被研究。3.温带草原区的植被研究。4.温带荒漠区的植被研究。5.青藏高寒高原区的植被研究。6.中国植被及其地理、分区和植被图研究。7.环境植物学的研究等。二,展望1.植被基本理论的研究2.植被图志的编制和植被制图学研究 3.栽培植物群落和经济植物生态学特性研究4.实验群落学和植物生理生态学研究5.陆地生态系统的结构和功能的研究6.环境保护的植物生态学研究7.植物和植物群落指示性研究  相似文献   

3.
长吻鮠精巢及精子结构的研究   总被引:11,自引:0,他引:11  
长吻鮠精巢高度分支呈指状。后1/3紫红色,由上皮细胞组成,既不产生精子,也不贮存精子。精巢的内部结构为叶型,由体细胞和生殖细胞构成,小叶的基本单位是小囊。精子头短而圆,主要为核占据,无顶体,核凹窝十分发达,有中心粒帽;尾极长,具侧鳍,轴丝基部有发达的囊泡状结构和线粒体。  相似文献   

4.
The development of the anther wall follows Basic-type. The cytokinesis at the time of pollen mother cell meiosis conforms to successive type. The arrangement of the microspores in the tetrad is referred to isobilateral. The primary wall between the generative cell and the vegetative cell is callose. The callose wall is easily detected under the fluorescence microscope. The mature pollen grain is 2-celled type. The ovule is bitegminous, tenui-nucellar and anatropous. The development of the female gametophyte follows Fritillaria-type. The mature embryo sac. consists of the six cells including the seven nuclei. The fertilization is referred to the premitotic syngamy type. The fusion of the female and male nucleoli is not observed at the end of the fertilization. The division of the primary endosperm nucleus is earlier than that of the zygote. The development of the endosperm is referred to nuclear type. The division of the zygote is transverse of longitudinal, the development of the embryo conforms to Onagradtype. When the seed is mature, the embryo is at the proembryo stage without differentiation and the endosperm cells are not absorbed.  相似文献   

5.
舞花姜花部维管束系统的解剖学研究   总被引:1,自引:0,他引:1  
关岚岚  邹璞  廖景平 《西北植物学报》2008,28(12):2385-2392
对舞花姜(Globba racemosa)花部维管束系统进行解剖学观察分析,以探讨其缺失雄蕊的去向及其唇瓣和腺体结构的属性.结果显示:(1)舞花姜花梗部的维管束分散排列在基本组织内.(2)子房基部的维管束排成2部分,中央区为分散排列的小维管束,外方为一轮大维管束环,且外环维管束发育为子房壁维管束,心皮背束和隔膜束均起源于中心区维管束,二者的分支在延长部形成一个维管束网结;在网结之上,近轴面的两束心皮背束分支分别进入到2枚侧生退化雄蕊中并成为其主束,远轴面心皮背束的内方分支则成为唇瓣中束,三束心皮背束的其余分支均上行入萼片.(3)唯一1枚功能雄蕊接受近轴面隔膜束的内方主支作为其主束,远轴面2枚隔膜束的主支最后进入唇瓣的两侧束,三束隔膜束的外分支均发育为花瓣束.研究认为:舞花姜的唇瓣是一个三重结构,其中央维管束代表1枚外轮雄蕊,两侧维管束则分别代表2枚内轮雄蕊;舞花姜的2枚花瓣状退化雄蕊与唇瓣的中央一起构成外轮雄蕊,唯一1枚可育雄蕊和唇瓣的两侧同属内轮雄蕊.本研究结果支持姜科子房延长部形成的腺体属于子房上部心皮边缘的维管化附属物的观点.  相似文献   

6.
The trabeculae cranii are at first quite separate from each other, after few days their anterior two fifths are connected by a trabecular plate which is obliterated throughout development. The paired origin of the parachordal plate is not observed. The fused posterior orbital cartilages chondrify in the form of a wide short plate, traversed by the oculomotor and trochlear nerves. The basicranial fenestra and fenestra ovalis are formed by the degeneration of pre-existing cartilage. The cochlear portion is completely fused with the parachordal plate from the very beginning. The elements of the pterygoquadrate are fused together. The quadrate and Meckel's cartilage are in close contact from the very beginning. While the lower part of the interorbital septum is derived from the trabecula communis, its upper part is derived from the anterior orbital cartilages. The lateral parts of the fused posterior orbital cartilages give rise to most of the taeniae and pilae of the orbitotemporal region. There is only one commissure between the auditory capsule and parachordal plate. A cartilaginous connection between the distal portion of the columella auris and ceratohyal persists for some time. The parietotectal and paranasal cartilages are fused together from the very beginning. The processus paroticus originates from the columella auris. In the fully formed stage the notochord is completely embedded in the occipital condyle. The union between the condyle and odontoid process persists. The auditory capsules and occipital arches contribute to the formation of the tectum synoticum plus posterius. The prefacial commissure and facial foramen lie in front of the cochlear portion. The columella auris possesses a processus internus (connected with the quadrate), but the processes a dorsalis has completely disappeared. The orbitotemporal region is quite complete. A medial fenestra is formed in the planum supraseptale. A fenestra is observed in each of the interorbital and nasal septa. The lamina transversalis anterior is fused with the parietotectal cartilage. A complete zona annularis is present. The outer wall of the paranasal cartilage is perforated by a large fenestra lateralis. The parietotectal and paranasal cartilages and the posterior process of the lamina transversalis anterior contribute to the formation of the concha nasalis. There is a contact between the planum antorbitale and nasal septum. The pterygoid process has disappeared. The common characters of the lacertid chondrocranuium are deduced.  相似文献   

7.
The ultrathin structure of the amoeboid flagellate Thaumatomonas coloniensis Wylezich et al. has been studied. The cell is surrounded by somatic scales forming on the surface of the mitochondria. The heterodynamic flagella emerge from the small flagellar pocket. Both flagella are covered by pineal scales and thin twisted mastigonemes. The kinetosomes lie parallel to each other. The transitional zone of the flagella carries the thin-walled cylinder. The transversal plate of the flagella is above the cell surface. The flagellar root system consists of three microtubular bands and a fibrillar rhizoplast. The vesicular nucleus and Golgi apparatus are of the usual structure. The mitochondria contain tubular cristae. The extrusive organelles (kinetocysts) contain amorphous material and a capsule; they are located in cytoplasm. The capsule consists of a muff and cylinder. Osmiophilic bodies of various shapes contain crystalloid inclusions. The pseudopodia capturing the bacteria emerge from the ventral groove. The groove is armored by the two longitudinal groups of the close situated microtubules. Microbodies and symbiotic bacteria have not been discovered. The resemblance of Th. coloniensis with other thaumatomonads is discussed.  相似文献   

8.
应用扫描电镜(SEM)与透射电镜(TEM)观察了黄姑鱼和大黄鱼精子的超微结构。结果显示,黄姑鱼和大黄鱼精子无论在形态、大小还是超微结构上都十分相似。黄姑鱼和大黄鱼精子均由头部、中段和尾部(鞭毛)3部分组成。精子头部形状近似椭圆形,无顶体,细胞核呈肾形。中心粒复合体位于细胞核背侧,近、远端中心粒相互垂直,远端中心粒分化成基体并形成轴丝。中段的袖套呈筒状,4~5个圆形的线粒体围绕轴丝呈环形排列。精子尾部为单鞭毛,轴丝为典型“9+2”结构,鞭毛表面质膜形成不规则侧鳍。  相似文献   

9.
鳗鲡肝脏、脾脏显微与超微结构   总被引:27,自引:0,他引:27  
郭琼林  卢全章 《动物学报》1994,40(2):125-130
经光镜和电镜观察发现:鳗鲡肝脏的肝小叶不规则。肝细胞胞质内富含多种细胞器及包含物。胆小管由2—4个肝细胞围成,相邻肝细胞间有连接复合体封闭胆小管。肝血窦为有孔型、孔处无隔膜,内有巨噬细胞。窦周隙明显,未见贮脂细胞。肝细胞向胆小管腔与窦周隙面伸出许多指状微绒毛。脾脏内白髓中淋巴细胞聚集成群,未见明显脾小结、淋巴鞘。红髓由脾索与脾窦组成,动脉分支末端(壁厚的毛细血管)可开放于红髓,无明显巨噬细胞中心。脾窦及脾小动脉内皮细胞通常为长杆状、沿血管纵向平行排列。脾窦为有孔型,孔处可见薄的隔膜。脾小动脉内皮外为2—5层平滑肌(多数为纵行)。  相似文献   

10.
马蹄香大小孢子发生及雌雄配子体形成   总被引:1,自引:0,他引:1  
马蹄香(Sarumahenryi,Oliv.)花药壁的发育属双子叶型。花粉母细胞减数分裂为同时型,四分体主要为四面体形,少数为左右对称式排列。腺质绒毡层,其细胞可排列为不规则的两层,双核或多核。到单细胞花粉阶段,绒毡层细胞内切向壁上出现许多乌氏体。成熟花粉为2细胞型,圆球状,具单萌发沟。雌蕊6心皮,上部彼此分离、下部联合。倒生胚珠,双珠被,厚球心。胚囊发育蓼型。成熟胚囊为七细胞结构,但两个助细胞退化较早。  相似文献   

11.
P. godefroyae is one of the diandrous species of rather primitive orchids. The cytokinesis of PMCs conforms to simultaneous type. The arrangement of microspores in a tetrad is tetrahedral or isobilateral. The first mitosis in a pollen grain is unequal and results in the formation of two unequal cells. The small one is the generative cell and the large one, the vegetative cell. The wall material between them is callose which is easily detectable under the fluorescence microscope. When the generative cell detaches from the microspore wall and migrates into the cytoplasm of the vegetative cell, the callose wall disappears and a thin PAS-positive wall Was observed around the generative cell. The PAS-positive wall remains untill anthesis. The tapetum is of secretory type and its cells are binucleate. With the degradation of the tapetal cells, they discharge a lot of yellow, amorphous, sticky mass into the pollen sac. The pollens distribute in it to form a sticky pollen mass. The ovule has single integument and one layered nucellus around the magaspore mother cell. The mature embryo sac consists of eight or six cells and conforms to the Allium type. The interval between pollination and fertilization is about 45 days and the normal double fertilization has been observed. The primary endosperm cell undergoes one division only and results in the formation of 2 nucleate endosperm. The dormancy period of zygote lasts 45–50 days. During the development of the embryo, a suspensor consisting of a row of two to four cells is formed. It takes more than six months from the pollination to the maturation of the seed. The embryo in the mature seed is just an ellipsoidal mass of 120–140 cells without differentiation. The endosperm and suspensor are all degenerated in the mature seed.  相似文献   

12.
This paper presents a detailed report on the developmental progresses of the microsporangium and its microspores in Azolla filiculoides Lam., and shows the morphologicaI structures of the respective developmental stares with the aid of scanning electron photographs. The entire developmental progress may be divided into six stages: ( 1 ) The microspore mother cell initiating stage The microsporangium initial on the placenta of the sporocarp gave rise a sporogenous cell, and then divided four times to form sixteen microspore mother cells; (2) The meiotic stage–The microspore mother cells initiated meiosis inside their calIose walls. The radial and inner tangential walls of the tapetum were dissolved at the same time and followed by the formation of a sporoplasmodium; (3) The microspore shrinking Ⅰ–After the callose walls of tetrads was dissolved, those microspores that just released from the callose walls shrunk intensely and became spherical later again. The sporoderm of microspores was principally synthesized in this stage, and the volume of microspores became evidently increased. The microspores then gradually moved to the periphery of the sporoplasmodium; (4) The microspore shrinking Ⅱ-Each microspore formed a large vacuole and gave rise the second contraction. The periphery of the sporoplasmodium was gradually dissolved; (5) The massulae forming stage–The sporoplasmodium was dissolved successivelly, and the undissolvable granules and organelle membrane residues. became aggregated into the compartmental layer, and the microsporangium was divided into several large vesicles, each vesicle will form a massulae; (6) The microspore germinating stage–The ,natured microspores inside the massulae each gave rise an androgonial initial which divided two times to form four antherozoid mother cells and then gave rise the antherozoids. The relationships between the various morphological structures and their functions in the microsporangium developmental progress have breify discussed. In addition, our viewpoints have compared with those of previous investigations.  相似文献   

13.
芒苞草形态学和胚胎学研究:Ⅱ.花药和胚珠发育的研究   总被引:3,自引:0,他引:3  
李平  高宝莼 《植物研究》1992,12(4):389-398
芒苞草成熟胚珠为倒生型,薄珠心,双珠被。胎座为侧膜胎座向中轴胎座的过渡类型。胚囊发育为单孢蓼型。 成熟胚囊由印器,具二极核的中央细胞及三个反足细胞组成。助细胞呈倒梨形,极性不明显,珠孔端壁有角状的丝状器。中央细胞的二极核在受精前融合为次生核。 花药具二个小孢子囊,花药壁层为单子叶型,具分泌型绒毡层,小孢子母细胞减数分裂时,胞质分裂为连续型,四分体是左右对称式排列,成熟花粉粒为二细胞的。 在花药与胚珠发育过程中,多糖物质的消长是有规律的变化。  相似文献   

14.
The structure of the flagellar apparatus in the excavate flagellate Parabodo nitrophilus Skuja has been studied. Two smooth heterodynamic flagella emerge from the bottom of the flagellar apparatus. The kinetosomes connected by their proximal ends lie under an acute angle to each other and bear against the plate on the anteior wall of kinetoplast. The dorsal and ventral rootlets emerge from the kinetosomes and are transformed into dorsal and ventral bands. The latter accompanies the posterior flagellum. The MTR band begins inside the wall of the flagellar pocket. The upper part of the cytopharynx is armored by MTR and FAS bands, cross-banded fibril and structure, and additional microtubules. The MTR band and three additional microtubules surround the bottom part of cytopharynx. The mitochondrium contains compact kinetoplast and discoid cristae. The resemblance of Parabodo nitrophilus with other free-living kinetoplastids is discussed.  相似文献   

15.
The present study deals with the distribution of adenosine triphosphatase and 5'-nucleotidase in the various constituents of thoracic ganglia and associated nerve of Periplaneta americana. The localization of both the enzymes in the thoracic ganglia is identical. The neural lamella is devoid of any activity for both the enzymes. The ganglion cells are intensely positive at their borders. The neuronal cell surface and/or glial cell processes which envelope the neurons show intense activity for these enzymes. Adenosine triphosphatase and 5'-nucleotidase are present around "giant fibres" and small axons. The activity appears to confine itself in the sheaths. The cytoplasm and the nuclei of the neurons are devoid of enzymatic activity, whereas the nucleoli are slightly active. The nerves are positive for both the enzymes. The role of these enzymes at different sites has also been discussed.  相似文献   

16.
The flower develops in March and blossoms in early May in Nanjing. The cytokinesis of microsporocytes is simultaneous and most tetrads are tetrahedral. The tapetum is secretory and the nuclei become polyploid at last. The style is solid and most ovaries are unilocular, rarely bilocular. The ovule is pendulous, anatropous and unitegmic. The nucellus is pseudocrassinucellate. An obturator formed by transmitting tissue covers the micropyle. The raphe vascular strand extends into the integument when it reaches the chalaza and on a whole keeps a “U” shape. The endothelium cell is uninucleate. In most cases no nucellar cap is formed. No hypostase is found below the embryo sac. The archesporium is one-celled. The embryo sac development conforms to the Polygonum or Allium types. The degeneration of the megaspores in the linear tetrad usually occurs from the chalazal toward the micropylar end. Two synergids persist during fertilization. Three antipodal cells are uninucleate and ephemeral. Two polar nuclei fuse at the time of fertilization. The fertilization type accords with porogamy. The syngamy is premitotic. The development of endosperm is cellular. The initial four successive divisions of the primary endosperm cell are transverse-verticaltransverse-transverse subsequently, giving rise to sixteen cells of the early endosperm. The mature embryo is straight and nearly as long as the endospermous seed. The cotyledons are more or less cordate at base. The seedoat is thin and composed of 5-11 layers of compressed cells. Neither embryo nor endosperm contain the alkaloid camptothecine. The major similarities of Nyssa sinensis to the American nyssas in embryology, which may be a counted as the generic features, are the polyploid tapetum cells, the unitegmic ovule with U-shaped vascular strand, the direct enlargement of the archesporial cell to produce the megasporocyte, the pseudocrassinucellus, the usual absence of the nucellar cap, the Polygonum or Allium type of the embryo sac development, the first degeneration of the metachalazal megaspore, the ephemeral antipodal cells, a single nucleolus in the nucleus ofthe primary endosperm cell, the more or less cordate base of the cotyledons.  相似文献   

17.
四川自贡发现合川马门溪龙新材料   总被引:1,自引:0,他引:1  
叶勇  欧阳辉  傅乾明 《古脊椎动物学报》2001,39(4):266-271,T001
记述了产自四川自贡上侏罗统的一具较完整的蜥脚类恐龙骨架 ,将其归入合川马门溪龙 (Mamenchisaurushochuanensis)中。新材料的发现弥补了合川种正型标本的不足 ,对合川种的特征作了重要补充 ,同时也使我们对马门溪龙的末端尾椎形态有了新的认识。  相似文献   

18.
小玉竹的胚胎学研究   总被引:3,自引:0,他引:3  
小玉竹Polygonatum humile Fisch.ex Maxim.的花药四室.绒毡层腺质型,发育后期出现双核至多核。小孢子四分体左右对称型,偶见四面体型,胞质分裂连续型。成熟花粉具2细胞。子房3室,中轴胎座。胚珠倒生,双珠被,厚珠心,珠孔由内珠被形成。胚囊发育为葱型。受精后,子房壁和外珠被细胞中含有草酸钙针晶。胚发育类似于紫菀型,基细胞有时纵裂形成两个子细胞。胚乳核型。根据实验结果,并结合前人的资料,本文提出了黄精属的胚胎学特征,并在此基础上对黄精族的概念以及属间系统关系进行了探讨。  相似文献   

19.
七叶树小孢子发生及雄配子体发育研究   总被引:1,自引:0,他引:1  
用石蜡切片法观察了七叶树花药的发育过程.结果表明:(1)雄蕊花药四室,花药壁完全分化时,从外到内依次是表皮、药室内壁、中层和绒毡层,花药壁发育为基本型.表皮细胞1层,发育过程中始终存在;药室内壁在花药成熟时形成带状纤维层加厚;幼小花药壁的中层3~4层细胞,在花药发育成熟时退化消失;绒毡层1层细胞,发育类型为分泌型,小孢子母细胞减数分裂时绒毡层开始退化解体,花药成熟完全消失,仅剩1层绒毡层膜.每一花药中有多列雄性孢原细胞,发生于幼小花药表皮下方;(2)小孢子母细胞减数分裂为同时型,四分体多呈正四面体排列;减数分裂过程中,小孢子母细胞外方被胼胝质壁所包被,小孢子形成后胼胝质壁逐渐消失.成熟花粉二细胞型,外形呈圆三角状,具三孔沟.  相似文献   

20.
红皮树胚胎发育   总被引:3,自引:0,他引:3  
本文报道红皮树(Styrax suberifoltus Hook.et Arn.)大小孢子发育和早期胚胎发生。子房具胚珠20—23枚,胚珠横生,珠被二层,薄珠心,孢原细胞直接起大孢子母细胞作用。合点端大孢子具功能。胚囊发育为正常型。成熟胚囊具大量淀粉粒。小孢子形成为同时型,成熟花粉为二细胞型。传粉后、受精前两个助细胞在形状和对苏木精着色程度上有显著区别。胚乳发育为细胞型。在合子分裂前,胚乳细胞增至约26个时,暂时停止分裂。苏木精对细胞质不易着色,似解体细胞。有胚乳吸器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号