首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Regulation of mRNA translation is an important regulatory step in gene expression. During embryonic development, mRNA translation is tightly regulated to produce the protein at the right place, at the right time. The eukaryotic initiation factor 4E (eIF4E) is a major target for the regulation of cap-dependent translation, that plays a key role during embryogenesis including gametogenesis, fertilization and establishment of embryonic axes. In this review, we describe recent advances illustrating the importance of the translational regulator eIF4E and its partners in developmental decisions. double dagger.  相似文献   

3.
4.
5.
6.
Translational control of gene expression plays a key role in many biological processes. Consequently, the activity of the translation apparatus is under tight homeostatic control. eIF4E, the mRNA 5' cap-binding protein, facilitates cap-dependent translation and is a major target for translational control. eIF4E activity is controlled by a family of repressor proteins, termed 4E-binding proteins (4E-BPs). Here, we describe the surprising finding that despite the importance of eIF4E for translation, a drastic knockdown of eIF4E caused only minor reduction in translation. This conundrum can be explained by the finding that 4E-BP1 is degraded in eIF4E-knockdown cells. Hypophosphorylated 4E-BP1, which binds to eIF4E, is degraded, whereas hyperphosphorylated 4E-BP1 is refractory to degradation. We identified the KLHL25-CUL3 complex as the E3 ubiquitin ligase, which targets hypophosphorylated 4E-BP1. Thus, the activity of eIF4E is under homeostatic control via the regulation of the levels of its repressor protein 4E-BP1 through ubiquitination.  相似文献   

7.
The present study examined potential mechanisms contributing to the inhibition of protein synthesis in skeletal muscle after administration of endotoxin (LPS). Rats implanted with vascular catheters were injected intravenously with a nonlethal dose of Escherichia coli LPS, and samples were collected at 4 and 24 h thereafter; pair-fed control animals were also included. The rate of muscle (gastrocnemius) protein synthesis in vivo was reduced at both time points after LPS administration. LPS did not alter tissue RNA content, but the translational efficiency was consistently reduced at both time points. To identify mechanisms responsible for regulating translation, we examined several eukaryotic initiation factors (eIFs). The content of eIF2alpha or the amount of eIF2alpha in the phosphorylated form did not change in response to LPS. eIF2B activity was decreased in muscle 4 h post-LPS but activity returned to control values by 24 h. A decrease in the relative amount of eIF2Balpha protein was not responsible for the LPS-induced reduction in eIF2B activity. LPS also markedly altered the distribution of eIF4E in muscle. Compared with control values, LPS-treated rats demonstrated 1) a transient increase in binding of the translation repressor 4E-binding protein-1 (4E-BP1) with eIF4E, 2) a transient decrease in the phosphorylated gamma-form of 4E-BP1, and 3) a sustained decrease in the amount of eIF4G associated with eIF4E. LPS also decreased insulin-like growth factor (IGF) I protein and mRNA expression in muscle at both times. A significant linear relationship existed between muscle IGF-I and the rate of protein synthesis or the amount of eIF4E bound to eIF4G. In summary, these data suggest that LPS impairs muscle protein synthesis, at least in part, by decreasing translational efficiency, resulting from an impairment in translation initiation associated with alterations in both eIF2B activity and eIF4E availability.  相似文献   

8.
Eukaryotic initiation factor 4E (eIF4E), a fundamental effector and rate limiting element of protein synthesis, binds the 7-methylguanosine cap at the 5′ end of eukaryotic messenger RNA (mRNA) specifically as a constituent of eIF4F translation initiation complex thus facilitating the recruitment of mRNA to the ribosomes. This review focusses on the engagement of signals contributing to growth factor originated maxim and their role in the activation of eIF4E to achieve a collective influence on cellular growth, with a key focus on conjuring vital processes like protein synthesis. The review invites considerable interest in elevating the appeal of eIF4E beyond its role in regulating translation viz a viz cancer genesis, attributed to its phosphorylation state that improves the prospect for the growth of the cancerous cell. This review highlights the latest studies that have envisioned to target these pathways and ultimately the translational machinery for therapeutic intervention. The review also brings forward the prospect of eIF4E to act as a converging juncture for signaling pathways like mTOR/PI3K and Mnk/MAPK to promote tumorigenesis.  相似文献   

9.
Insulin-like growth factor I (IGF-I) promotes anabolism by stimulating protein synthesis in skeletal muscle. In the present study, we have examined mechanisms by which IGF-I stimulates protein synthesis in skeletal muscle with a perfused rat hindlimb preparation. IGF-I (10 nM) stimulated protein synthesis over 2.7-fold. Total RNA content was unaffected, but translational efficiency was increased by IGF-I. We next examined the effect of IGF-I on eukaryotic initiation factor (eIF) 4E as a mechanism regulating translation initiation. IGF-I did not alter either the amount of eIF4E associated with the eIF4E binding protein 4E-BP1 or the phosphorylation state of 4E-BP1. Likewise, the phosphorylation state of eIF4E was unaltered by IGF-I. In contrast, the amount of eIF4E bound to eIF4G was increased threefold by IGF-I. We conclude that IGF-I regulates protein synthesis in skeletal muscle by enhancing formation of the active eIF4E x eIF4G complex.  相似文献   

10.
Changes to the translational machinery that occur during apoptosis have been described in the last few years. The two principal ways in which translational factors are modified during apoptosis are: (i) changes in protein phosphorylation and (ii) specific proteolytic cleavages. Taxol, a member of a new class of anti-tubulin drugs, is currently used in chemotherapeutic treatments of different types of cancers. We have previously demonstrated that taxol induces calpain-mediated apoptosis in NIH3T3 cells [Pi?eiro et al., Exp. Cell Res., 2007, 313:369-379]. In this study we found that translation was significantly inhibited during taxol-induced apoptosis in these cells. We have studied the phosphorylation status and expression levels of eIF2a, eIF4E, eIF4G and the regulatory protein 4E-BP1, all of which are implicated in translation regulation. We found that taxol treatment did not induce changes in eIF2alpha phosphorylation, but strongly decreased eIF4G, eIF4E and 4E-BP1 expression levels. MDL28170, a specific inhibitor of calpain, prevented reduction of eIF4G, but not of eIF4E or 4E-BP1 levels. Moreover, the calpain inhibitor did not block taxol-induced translation inhibition. All together these findings demonstrated that none of these factors are responsible for the taxol-induced protein synthesis inhibition. On the contrary, taxol treatment increased elongation factor eEF2 phosphorylation in a calpain-independent manner, supporting a role for eEF2 in taxol-induced translation inhibition.  相似文献   

11.
Translation of cyclin mRNAs represents an important event for proper meiotic maturation and post-fertilization mitoses in many species. Translational control of cyclin B mRNA has been described to be achieved through two separate but related mechanisms: translational repression and polyadenylation. In this paper, we evaluated the contribution of global translational regulation by the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-binding protein) on the cyclin B protein synthesis during meiotic maturation of the starfish oocytes. We used the immunosupressant drug rapamycin, a strong inhibitor of cap-dependent translation, to check for the involvement of this protein synthesis during this physiological process. Rapamycin was found to prevent dissociation of 4E-BP from the initiation factor eIF4E and to suppress correlatively a burst of global protein synthesis occurring at the G2/M transition. The drug had no effect on first meiotic division but defects in meiotic spindle formation prevented second polar body emission, demonstrating that a rapamycin-sensitive pathway is involved in this mechanism. While rapamycin affected the global protein synthesis, the drug altered neither the specific translation of cyclin B mRNA nor the expression of the Mos protein. The expression of these two proteins was correlated with the phosphorylation and the dissociation of the cytoplasmic polyadenylation element-binding protein from eIF4E.  相似文献   

12.
Translation is a fundamental step in gene expression, and translational control is exerted in many developmental processes. Most eukaryotic mRNAs are translated by a cap-dependent mechanism, which requires recognition of the 5′-cap structure of the mRNA by eukaryotic translation initiation factor 4E (eIF4E). eIF4E activity is controlled by eIF4E-binding proteins (4E-BPs), which by competing with eIF4G for eIF4E binding act as translational repressors. Here, we report the discovery of Mextli (Mxt), a novel Drosophila melanogaster 4E-BP that in sharp contrast to other 4E-BPs, has a modular structure, binds RNA, eIF3, and several eIF4Es, and promotes translation. Mxt is expressed at high levels in ovarian germ line stem cells (GSCs) and early-stage cystocytes, as is eIF4E-1, and we demonstrate the two proteins interact in these cells. Phenotypic analysis of mxt mutants indicates a role for Mxt in germ line stem cell (GSC) maintenance and in early embryogenesis. Our results support the idea that Mxt, like eIF4G, coordinates the assembly of translation initiation complexes, rendering Mxt the first example of evolutionary convergence of eIF4G function.  相似文献   

13.
14.
The eukaryotic initiation factor eIF4G is a large modular protein which serves as a docking site for initiation factors and proteins involved in RNA translation. Together with eIF4E and eIF4A, eIF4G constitutes the eIF4F complex which is a key component in promoting ribosome binding to the mRNA. Thus, the central role of eIF4G in initiation makes it a valid target for events aimed at modulating translation. Such events occur during viral infection by picornaviruses and lentiviruses and result in the hijack of the translational machinery through cleavage of eIF4G. Proteolysis of eIF4G is also mediated by caspases during the onset of apoptosis causing inhibition of protein synthesis. We will review the role of eIF4G and protein partners as well as the cellular and viral events that modulate eIF4G activity in the initiation of translation.  相似文献   

15.
16.
真核翻译起始因子3(Eukaryotic translation factor 3,eIF3)是由多个亚单位组成的复合因子,其中eIF3a是其最大的亚单位。很多研究表明在酵母和哺乳动物细胞中,eIF3都参与了m RNA翻译起始,并对蛋白质的合成有很好的调控作用。值得一提的是eIF3a通过调控一系列与肿瘤的生成、细胞周期的调控DNA修复等过程相关的m RNA的翻译从而在肿瘤的发生、演进和干预中发挥重要作用。此外,研究发现eIF3a对RAF-MEK-ERK信号通路有抑制作用。eIF3a对蛋白质翻译的调节及其对RAF-MEK-ERK信号通路的影响使其有望成为肿瘤治疗的新靶点。本文将着重围绕eIF3a在肿瘤发生、演进和干预中的作用进行概述。  相似文献   

17.
Mammalian hibernation involves cessation of energetically costly processes typical of homeostatic regulation including protein synthesis. To further elucidate the mechanisms employed in depressing translation, we surveyed key eukaryotic initiation factors [eIF2, eIF4B, eIF4E, eIF4GI and -II, and 4E-binding protein-1 (4E-BP1), -2, and -3] for their availability and phosphorylation status in the livers of golden-mantled ground squirrels (Spermophilus lateralis) across the hibernation cycle. Western blot analyses indicated only one significant locus for regulation of translational initiation in ground squirrel liver: control of eIF4E. We found seasonal variation in a potent regulator of eIF4E activity, 4E-BP1. Summer squirrels lack 4E-BP1 and apparently control eIF4E activity through direct phosphorylation. In winter, eIF4E is regulated through binding with 4E-BP1. During the euthermic periods that separate bouts of torpor (interbout arousal), 4E-BP1 is hyperphosphorylated to promote initiation. However, during torpor, 4E-BP1 is hypophosphorylated and cap-dependent initiation of translation is restricted. The regulation of cap-dependent initiation of translation may allow for the differential expression of proteins directed toward enhancing survivorship.  相似文献   

18.
19.
Eukaryotic translation initiation factor 4E (eIF4E) is an essential component of the translational machinery that binds m(7)GTP and mediates the recruitment of capped mRNAs by the small ribosomal subunit. Recently, a number of proteins with homology to eIF4E have been reported in plants, invertebrates, and mammals. Together with the prototypical translation factor, these constitute a new family of structurally related proteins. To distinguish the prototypical translation factor eIF4E from other family members, it has been termed eIF4E-1 (Keiper, B. D., Lamphear, B. J., Deshpande, A. M., Jankowska-Anyszka, M., Aamodt, E. J., Blumenthal, T., and Rhoads, R. E. (2000) J. Biol. Chem. 275, 10590-10596). We describe the characterization of two eIF4E family members in the zebrafish Danio rerio. Based on their relative identities with human eIF4E-1, these zebrafish proteins are termed eIF4E-1A (82%) and eIF4E-1B (66%). eIF4E-1B, originally termed eIF4E(L), has been reported previously as the zebrafish eIF4E-1 counterpart (Fahrenkrug, S. C., Dahlquist, M. O., Clark, K., and Hackett, P. B. (1999) Differentiation 65, 191-201; Fahrenkrug, S. C., Joshi, B., Hackett, P. B., and Jagus, R. (2000) Differentiation 66, 15-22). Sequence comparisons suggest that the two genes probably evolved from a duplication event that occurred during vertebrate evolution. eIF4E-1A is expressed ubiquitously in zebrafish, whereas expression of eIF4E-1B is restricted to early embryonic development and to gonads and muscle of the tissues investigated. The ability of these two zebrafish proteins to bind m(7)GTP, eIF4G, and 4E-BP, as well as to complement yeast conditionally deficient in functional eIF4E, show that eIF4E-1A is a functional equivalent of human eIF4E-1. Surprisingly, although eIF4E-1B possesses all known residues thought to be required for interaction with the cap structure, eIF4G, and 4E-BPs, it fails to interact with any of these components, suggesting that this protein serves a role other than that assigned to eIF4E.  相似文献   

20.
Protein synthesis underlying activity-dependent synaptic plasticity is controlled at the level of mRNA translation. We examined the dynamics and spatial regulation of two key translation factors, eukaryotic initiation factor 4E (eIF4E) and elongation factor-2 (eEF2), during long-term potentiation (LTP) induced by local infusion of brain-derived neurotrophic factor (BDNF) into the dentate gyrus of anesthetized rats. BDNF-induced LTP led to rapid, transient phosphorylation of eIF4E and eEF2, and enhanced expression of eIF4E protein in dentate gyrus homogenates. Infusion of the extracellular signal-regulated kinase (ERK) inhibitor U0126 blocked BDNF-LTP and modulation of the translation factor activity and expression. Quantitative immunohistochemical analysis revealed enhanced staining of phospho-eIF4E and total eIF4E in dentate granule cells. The in vitro synaptodendrosome preparation was used to isolate the synaptic effects of BDNF in the dentate gyrus. BDNF treatment of synaptodendrosomes elicited rapid, transient phosphorylation of eIF4E paralleled by enhanced expression of alpha-calcium/calmodulin-dependent protein kinase II. In contrast, BDNF had no effect on eEF2 phosphorylation state in synaptodendrosomes. The results demonstrate rapid ERK-dependent regulation of the initiation and elongation steps of protein synthesis during BDNF-LTP in vivo. Furthermore, the results suggest a compartment-specific regulation in which initiation is selectively enhanced by BDNF at synapses, while both initiation and elongation are modulated at non-synaptic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号