首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Following the acquisition of chloroplasts and mitochondria by eukaryotic cells during endosymbiotic evolution, most of the genes in these organelles were either lost or transferred to the nucleus. Encoding organelle-destined proteins in the nucleus allows for host control of the organelle. In return, organelles send signals to the nucleus to coordinate nuclear and organellar activities. In photosynthetic eukaryotes, additional interactions exist between mitochondria and chloroplasts. Here we review recent advances in elucidating the intracellular signalling pathways that coordinate gene expression between organelles and the nucleus, with a focus on photosynthetic plants.  相似文献   

2.
Photocontrol of plastid gene expression   总被引:2,自引:0,他引:2  
  相似文献   

3.
4.
Chloroplast signals regulate hundreds of nuclear genes during development and in response to stress, but little is known of the signals or signal transduction mechanisms of plastid-to-nucleus (retrograde) signaling. In Arabidopsis thaliana, genetic studies using norflurazon (NF), an inhibitor of carotenoid biosynthesis, have identified five GUN (genomes uncoupled) genes, implicating the tetrapyrrole pathway as a source of a retrograde signal. Loss of function of any of these GUN genes leads to increased expression of photosynthesis-associated nuclear genes (PhANGs) when chloroplast development has been blocked by NF. Here we present a new Arabidopsis gain-of-function mutant, gun6-1D, with a similar phenotype. The gun6-1D mutant overexpresses the conserved plastid ferrochelatase 1 (FC1, heme synthase). Genetic and biochemical experiments demonstrate that increased flux through the heme branch of the plastid tetrapyrrole biosynthetic pathway increases PhANG expression. The second conserved plant ferrochelatase, FC2, colocalizes with FC1, but FC2 activity is unable to increase PhANG expression in undeveloped plastids. These data suggest a model in which heme, specifically produced by FC1, may be used as a retrograde signal to coordinate PhANG expression with chloroplast development.  相似文献   

5.
6.
An inhibitor analysis was used for studying the tetrapyrrole role in the regulation of the expression of the nuclear gene encoding a low-molecular-weight protein, a stress plastid light-inducible protein ELIP. 2,2′-Dipyridyl and norflurazon were used as inhibitors. Experiments with dipyridyl demonstrated that tetrapyrroles were involved in the regulation of Elip gene expression, inhibiting it by ~50%. Similar results were obtained when there was photodestruction of the chloroplasts, caused by a plant treatment with norflurazon. The results confirm the involvement of the chloroplasts in the regulation of the nuclear gene expression coding for plastid proteins. Tetrapyrroles are important contributors to this process.  相似文献   

7.
An inhibitor analysis was used for studying the tetrapyrrole role in the regulation of the expression of the nuclear gene encoding a low-molecular-weight protein, a stress plastid light-inducible protein ELIP. 2,2'-Dipyridyl and norflurazon were used as inhibitors. Experiments with dipyridyl demonstrated that tetrapyrroles were involved in the regulation of Elip gene expression, inhibiting it by approximately 50%. Similar results were obtained when there was photodestruction of the chloroplasts, caused by a plant treatment with norflurazon. The results confirm the involvement of the chloroplasts in the regulation of the nuclear gene expression coding for plastid proteins. Tetrapyrroles are important contributors to this process.  相似文献   

8.
9.
10.
11.
12.
13.
Communication between cellular compartments is vital for development and environmental adaptation. Signals emanating from organelles, so-called retrograde signals, coordinate nuclear gene expression with the developmental stage and/or the functional status of the organelle. Plastids (best known in their green photosynthesizing differentiated form, the chloroplasts) are the primary energy-producing compartment of plant cells, and the site for the biosynthesis of many metabolites, including fatty acids, amino acids, nucleotides, isoprenoids, tetrapyrroles, vitamins, and phytohormone precursors. Signals derived from plastids regulate the accumulation of a large set of nucleus-encoded proteins, many of which localize to plastids. A set of mutants defective in retrograde signaling (genomes uncoupled, or gun) was isolated over 25 years ago. While most GUN genes act in tetrapyrrole biosynthesis, resolving the molecular function of GUN1, the proposed integrator of multiple retrograde signals, has turned out to be particularly challenging. Based on its amino acid sequence, GUN1 was initially predicted to be a plastid-localized nucleic acid-binding protein. Only recently, mechanistic information on the function of GUN1 has been obtained, pointing to a role in plastid protein homeostasis. This review article summarizes our current understanding of GUN-related retrograde signaling and provides a critical appraisal of the various proposed roles for GUNs and their respective pathways.

This review summarizes new insights in GUN-mediated retrograde signaling, and highlights outstanding questions and challenges that should be addressed in future research.  相似文献   

14.
The phytochemical system of mustard-oil glucosides (glucosinolates) accompanied by the hydrolytic enzyme myrosinase (beta-thioglucosidase), the latter usually compartmented in special myrosin cells, characterizes plants in 16 families of angiosperms. Traditional classifications place these taxa in many separate orders and thus imply multiple convergences in the origin of this chemical defense system. DNA sequencing of the chloroplast rbcL gene for representatives of all 16 families and several putative relatives, with phylogenetic analyses by parsimony and maximum likelihood methods, demonstrated instead a single major clade of mustard-oil plants and one phylogenetic outlier. In a further independent test, DNA sequencing of the nuclear 18S ribosomal RNA gene for all these exemplars has yielded the same result, a major mustard-oil clade of 15 families (Akaniaceae, Bataceae, Brassicaceae, Bretschneideraceae, Capparaceae, Caricaceae, Gyrostemonaceae, Koeberliniaceae, Limnanthaceae, Moringaceae, Pentadiplandraceae, Resedaceae, Salvadoraceae, Tovariaceae, and Tropaeolaceae) and one outlier, the genus Drypetes, traditionally placed in Euphorbiaceae. Concatenating the two gene sequences (for a total of 3254 nucleotides) in a data set for 33 taxa, we obtain robust support for this finding of parallel origins of glucosinolate biosynthesis. From likely cyanogenic ancestors, the "mustard oil bomb" was invented twice.  相似文献   

15.
16.
General tendencies in the regulation of gene expression during atherogenesis were investigated using correlation analysis for 34 mRNA species of several functional groups. The contents of mRNA were measured by quantitative PCR in samples of human aortal intima containing no lesions or atherosclerotic lesions of types I (initial lesions), II (fatty streaks), and Va (fibroatheromas). The coupling between mRNA contents in lesions and the same mRNAs in intact tissue was found to descend in the course of the disease progression. The data are in accordance with the opinion that successive morphologic types of atherosclerotic lesions correspond to steps of atherogenesis. In addition, the contents of individual mRNA species could correlate with each other within the given sample type, the extent of this coupling rising along with the disease progression. The exception from this rule was a collapse in coupling for several functional groups of mRNA in lesions of type I. This collapse could indicate special position of these lesions in pathogenesis. Statistically significant correlations between mRNAs found in samples of all four types comprised in total about 50% of all possible correlations. 66% of these correlations were conservative, i.e. observed in at least two sample types. By coupling-strength, the studied mRNAs could be divided into four clusters whose composition significantly varied along with the disease progression. The disease progression was also associated with decline in number of regulatory factors that determine coordination in expression of the analyzed genes.  相似文献   

17.
Maple J  Winge P  Tveitaskog AE  Gargano D  Bones AM  Møller SG 《Planta》2011,234(5):1055-1063
Plastids are vital organelles involved in important metabolic functions that directly affect plant growth and development. Plastids divide by binary fission involving the coordination of numerous protein components. A tight control of the plastid division process ensures that: there is a full plastid complement during and after cell division, specialized cell types have optimal plastid numbers; the division rate is modulated in response to stress, metabolic fluxes and developmental status. However, how this control is exerted by the host nucleus is unclear. Here, we report a genome-wide microarray analysis of three accumulation and replication of chloroplasts (arc) mutants that show a spectrum of altered plastid division characteristics. To ensure a comprehensive data set, we selected arc3, arc5 and arc11 because they harbour mutations in protein components of both the stromal and cytosolic division machinery, are of different evolutionary origin and display different phenotypic severities in terms of chloroplast number, size and volume. We show that a surprisingly low number of genes are affected by altered plastid division status, but that the affected genes encode proteins important for a variety of fundamental plant processes.  相似文献   

18.
Biolistic co-transformation of the nuclear and plastid genomes   总被引:1,自引:0,他引:1  
Particle gun-mediated (so-called 'biolistic') transformation represents a universal genetic transformation technology that is widely applied in nearly all groups of organisms. The mechanism of how accelerated DNA-coated particles, after their entry into the cell, deliver the foreign DNA to the target compartment is not known. Here we have studied this process in plants by performing co-transformation experiments with vectors targeted to two different cellular compartments, the nucleus and the plastids (chloroplasts). We find that coating of particles with both plastid and nuclear transformation vectors can result in co-transformation of chloroplasts and the nucleus. In contrast, mixing of particles coated individually with the vectors does not produce co-transformed plants. Our data suggest that a single DNA-coated particle can transform more than one compartment of the plant cell, opening up the possibility to generate doubly transgenic plants in one step. Importantly, co-transformation can also be obtained in the absence of selection, thus providing a method to produce marker-free transgenic genomes. In addition, our findings raise the possibility of occasional inadvertent co-transformation of two genomes and, therefore, have important implications for the molecular characterization and regulation of transgenic plants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号