首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison has been made between sea urchin and starfish sperm chromatin. The only protein by which chromatins from these sources differ significantly is histone H2B. Sea urchin sperm H2B is known to contain an elongated N-terminal region enriched in Arg. Analysis of the micrococcal nuclease digests of sea urchin and starfish nuclei in one- and two-dimensional electrophoresis has shown that sperm chromatin of both animals consists of repeated units similar in general features to those of rat thymus or liver. However, DNA repeat length in chromatin of sea urchin sperm (237 bp) is higher than that of starfish sperm (224 bp), while the core DNA length does not differ and is the same as in the chromatin of rat liver or thymus. A suggestion has been made that the N-terminal region of histone H2B is associated with the linker DNA and is responsible for the increased length of sea urchin linker DNA.  相似文献   

2.
The method of velocity sedimentation have been used to investigate ionic-strength-induced compaction of sea urchin sperm chromatin characterized by extremely long linker DNA (100 b.p.). The dependence of sedimentation coefficients of oligonucleosomes on the number of nucleosomes in the chain have been studied in the range of ionic strength from 0.005 to 0.085. Analysis of these data indicates that such structural parameters of sea urchin sperm chromatin fibre as the diameter of the chain and the length of the chain per nucleosome are quite similar to those of chromatin with shorter linker DNA, but the DNA packing ratio is higher. The structure of sea urchin sperm oligonucleosomes agrees well with the model of three-dimensional zig-zag-shaped chain with linker DNA forming a loop. The possible role of alpha-helical regions of the C-terminal domain of sea urchin sperm histone H1 in the long linker DNA folding is discussed.  相似文献   

3.
Electric dichroism and X-ray scattering measurements on solutions of uncondensed and condensed chicken erythrocyte chromatin were interpreted on the basis of model calculations. Information about the state of uncondensed fibers in the conditions of electric dichroism measurements was obtained from scattering patterns recorded as a function of pH, in the presence of spermine and at very low monovalent cation concentrations. Electric dichroism measurements on a complex of uncondensed chromatin with methylene blue were made to determine the contribution of the linker and of the nucleosomes to the total dichroism.A new approach to calculate the dichroism from realistic structural models, which also yields other structural parameters (radius of gyration, radius of gyration of the cross-section, mass per unit length) was used. Only a restricted range of structures is simultaneously compatible with all experimental results. Further, it is shown that previous interpretations of dichroism measurements on chromatin were in contradiction with X-ray scattering data and failed to take into account the distribution of orientation of the nucleosomes in the fibers. When this is done, it is found that the linker DNA in chicken erythrocyte and sea urchin chromatin must run nearly perpendicularly to the fibre axis. Taken together with the dependence of the fibre diameter on the linker length, these results provede the strongest evidence hitherto available for a model in which the linker crosses the central part of the fibre.  相似文献   

4.
The assembly of hybrid core particles onto long chicken DNA with histone H2B in the chicken histone octamer replaced with either wheat histone H2B(2) or sea urchin sperm histone H2B(1) or H2B(2) is described. All these histone H2B variants have N-terminal extensions of between 18 and 20 amino acids, although only those from sea urchin sperm have S(T)PXX motifs present. Whereas chicken histone octamers protected 167 base pairs (bp) (representing two full turns) of DNA against micrococcal nuclease digestion (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813), all the hybrid histone octamers protected an additional 17-bp DNA against nuclease digestion. This protection was more marked in the case of hybrid octamers containing sea urchin sperm histone H2B variants and similar to that described previously (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813) for hybrid histone octamers containing wheat histone H2A variants all of which also have S(T)PXX motifs present. Continued micrococcal nuclease digestion reduced the length of DNA associated with the core particle via 172-, 162-, and 152-bp intermediates until the 146-bp core particle was obtained. These DNA lengths were approximately 5 bp or half a helical turn longer than those reported previously for stripped chicken chromatin and for core particles containing histone octamers reconstituted using "normal" length histone H2B variants. This protection pattern was also found in stripped sea urchin sperm chromatin, demonstrating that the assembly/digestion methodology reflects the in vivo situation. The interaction between the N-terminal histone H2B extension and DNA of the "linker" region was confirmed by demonstrating that stripped sea urchin sperm chromatin precipitated between 120 and 500 mM NaCl in a manner analogous to unstripped chromatin whereas stripped chicken chromatin did not. Tryptic digestion to remove all the histone tails abolished this precipitation as well as the protection of DNA outside of the 167-bp core particle against nuclease digestion.  相似文献   

5.
We have been able to generate ordered nucleosome arrays that span the physiological range of spacing periodicities, using an in vitro system. Our system (a refinement of the procedure previously developed) uses the synthetic polynucleotide poly[d(A-T)], poly[d(A-T)], core histones, purified H1, and polyglutamic acid, a factor that increases nucleohistone solubility and greatly promotes the formation of ordered nucleosome arrays. This system has three useful features, not found in other chromatin assembly systems. First, it allowed us to examine histones from three different cell types/species (sea urchin sperm, chicken erythrocyte, and HeLa) as homologous or heterologous combinations of core and H1 histones. Second, it allowed us to control the average packing density (core histone to polynucleotide weight ratio) of nucleosomes on the polynucleotide; histone H1 is added in a second distinct step in the procedure to induce nucleosome alignment. Third, it permitted us to study nucleosome array formation in the absence of DNA base sequence effects. We show that the value of the spacing periodicity is controlled by the value of the initial average nucleosome packing density. The full range of physiological periodicities appears to be accessible to arrays generated using chicken erythrocyte (or HeLa) core histones in combination with chicken H5. However, chromatin-like structures cannot be assembled for some nucleosome packing densities in reactions involving some histone types, thus limiting the range of periodicities that can be achieved. For example, H1 histone types differ significantly in their ability to recruit disordered nucleosomes into ordered arrays at low packing densities. Sea urchin sperm H1 is more efficient than chicken H5, which is more efficient than H1 from HeLa or chicken erythrocyte. Sea urchin sperm core histones are more efficient in this respect than the other core histone types used. These findings suggest how different repeat lengths arise in different cell types and species, and provide new insights into the problems of nucleosome linker heterogeneity and how different types of chromatin structures could be generated in the same cell.  相似文献   

6.
7.
We have confirmed the result that chicken beta-globin gene chromatin, which possesses the characteristics of active chromatin in erythroid cells, has shortened internucleosome spacings compared with bulk chromatin or that of the ovalbumin gene, which is inactive. To understand how the short (approximately 180-bp) nucleosome repeat arises specifically on beta-globin DNA, we have studied chromatin assembly of cloned chicken beta-globin DNA in a defined in vitro system. With chicken erythrocyte core histones and linker histone H5 as the only cellular components, a cloned 6.2-kb chicken beta-globin DNA fragment assembled into chromatin possessing a regular 180 +/- 5-bp repeat, very similar to what is observed in erythroid cells. A 2-kb DNA subfragment containing the beta A gene and promoter region, but lacking the downstream intergenic region between the beta A and epsilon genes, failed to generate a regular nucleosome array in vitro, suggesting that the intergenic region facilitates linker histone-induced nucleosome alignment. When the beta A gene was placed on a plasmid that contained a known chromatin-organizing signal, nucleosome alignment with a 180-bp periodicity was restored, whereas nucleosomes on flanking plasmid sequences possessed a 210-bp spacing periodicity. Our results suggest that the shortened 180-bp nucleosome spacing periodicity observed in erythroid cells is encoded in the beta-globin DNA sequence and that nucleosome alignment by linker histones is facilitated by sequences in the beta A-epsilon intergenic region.  相似文献   

8.
Comparison between the internucleosomal distance found by X-ray solution scattering for chicken erythrocyte (23 nm) and sea urchin (30 nm) chromatin indicates that this distance is proportional to the linker length. The diameter of the condensed sea urchin chromatin fibers is about 45 nm which is significantly larger than in chicken erythrocyte chromatin (35 nm). Trivalent cations (Gd, Tb, Cr) and the polyamines spermine and spermidine were found to induce compaction at much lower concentrations than the divalent cations but Gd, Tb and Cr induce aggregation before full compaction of the fibers. The influence of hydrogen bonding is illustrated by comparison of the effects of NaCl, ammonium chloride and alkylammonium chlorides on condensation. Solubility experiments indicate that there is a nearly linear dependence of the Mg-- concentration at which precipitation occures on chromatin concentration and confirm the differences between cations observed by X-ray scattering.The chicken erythrocyte chromatin samples were further characterized by their reduced electric dichroism. The values found are consistent with the model derived from X-ray scattering and are compared with those reported in the literature.  相似文献   

9.
The structural role of histone H2B from sea urchin sperm (H2Bsp) has been examined in experiments on reconstitution of chromatin from DNA and core histones taken in three variants: (1) four core histones from sea urchin sperm; (2) four core histones from calf thymus; (3) (H3, H4, H2A) from calf thymus and H2Bsp. It is shown that H2Bsp when present in reconstituted chromatin induces its aggregation. Fidelity of the reconstitution of nucleosomes has been tested using DNase I probe, one- and two-dimensional electrophoresis and electron microscopy. The reconstitutes that contain H2Bsp appear under electron microscope mainly as regular closely spaced large granules, about 450 A in diameter, which are very similar to the granules found in "native" sea urchin sperm chromatin. The reconstitutes formed by four core histones from calf thymus appear as randomly arranged particles, about 100 A in diameter. We conclude that histone H2Bsp participates in interactions between nucleosomes and is involved in the formation of the condensed supranucleosomal structure in sea urchin sperm chromatin.  相似文献   

10.
Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators.  相似文献   

11.
J D McGhee  J M Nickol  G Felsenfeld  D C Rau 《Cell》1983,33(3):831-841
We have used electric dichroism to study the arrangement of nucleosomes in 30 nm chromatin solenoidal fibers prepared from a variety of sources (CHO cells, HeLa cells, rat liver, chicken erythrocytes, and sea urchin sperm) in which the nucleosome spacer length varies from approximately 10 to approximately 80 bp. Field-free relaxation times are consistent only with structures containing 6 +/- 1 nucleosomes for every 11 nm of solenoidal length. With very few assumptions about the arrangement of the spacer DNA, our dichroism data are consistent with the same orientation of the chromatosomes for every chromatin sample examined. This orientation, which maintains the faces of the radially arranged chromatosomes inclined at an angle between 20 degrees-33 degrees to the solenoid axis, thus appears to be a general structural feature of the higher order chromatin fiber.  相似文献   

12.
13.
A study of the complexes formed between short linear DNA and three H1 variants, a typical somatic H1, and the extreme variants H5, from chicken erythrocytes, and spH1 from sea urchin sperm, has revealed differences between H1, H5 and spH1 that have implications for chromatin structure and folding. 1. All three histones bind cooperatively to DNA in 35 mM NaCl forming similar, but not identical, rod-like complexes. With sufficiently long DNA the complexes may be circular, circles forming more easily with H5 and spH1 than with H1. 2. The binding of H5 and spH1 to DNA is cooperative even in 5 mM NaCl, resulting in well-defined thin filaments that appear to contain two DNA molecules bridged by histone molecules. In contrast, H1 binds distributively over all the DNA molecules in 5 mM NaCl, but forms short stretches similar in appearance to the thin filaments formed with H5 and spH1. Rods appear to arise from the intertwining of regular thin filaments containing cooperatively bound histone molecules on raising the NaCl concentration to 35 mM. 3. The compositions of the rods correspond to one histone molecule for about every 47 bp (H1), 81 bp (H5) and 112 bp (spH1), suggesting average spacings of 24 bp (H1), 41 bp (H5) and 56 bp (spH1) in the component thin (double) filaments. Strikingly, these values are proportional to the linker lengths of the chromatins in which the particular H1 variant is the main or sole H1.  相似文献   

14.
Rat liver telomeric DNA is organised into nucleosomes characterised by a shorter and more homogeneous average nucleosomal repeat than bulk chromatin as shown by Makarov et al. (1). The latter authors were unable to detect the association of any linker histone with the telomeric DNA. We have confirmed these observations but show that in sharp contrast chicken erythrocyte telomeric DNA is organised into nucleosomes whose spacing length and heterogeneity are indistinguishable from those of bulk chromatin. We further show that chicken erythrocyte telomeric chromatin contains chromatosomes which are preferentially associated with histone H1 relative to histone H5. This contrasts with bulk chromatin where histone H5 is the more abundant species. This observation strongly suggests that telomeric DNA condensed into nucleosome core particles has a higher affinity for H1 than H5. We discuss the origin of the discrimination of the lysine rich histones in terms of DNA sequence preferences, telomere nucleosome preferences and particular constraints of the higher order chromatin structure of telomeres.  相似文献   

15.
Histone variants illuminate the behavior of chromatin through their unique structures and patterns of postsynthetic modification. This review examines the literature on heteromorphous histone structures in chromatin, structures that are primary targets for histone kinases and phosphatases in vivo. Special attention is paid to certain well-studied experimental systems: mammalian culture cells, chicken erythrocytes, sea urchin sperm, wheat sprouts, Tetrahymena, and budding yeast. A common theme emerges from these studies. Specialized, highly basic structures in histone variants promote chromatin condensation in a variety of developmental situations. Before, and sometimes after condensed chromatin is formed, the chromatin is rendered soluble by phosphorylation of the heteromorphous regions, preventing their interaction with linker DNA. A simple structural model accounting for histone variation and phosphorylation is presented.  相似文献   

16.
On the occurrence of nucleosome phasing in chromatin.   总被引:15,自引:0,他引:15  
D Lohr  K Tatchell  K E Van Holde 《Cell》1977,12(3):829-836
We have found that DNAase I digestion of yeast, HeLa and chicken erythrocyte nuclei produces a pattern of DNA fragments spaced 10 bases apart and extending to at least 300 bases. This "extended ladder" of DNA fragments is most clearly seen with yeast, and least clearly with chicken erythrocytes. The appearance of regular and discrete bands at sizes much larger than the repeat size shows that the core particles (140 bp of DNA + H2A, H2B, H3 H4) in at least some fraction of chromatin are spaced in a particular fashion, by discrete lengths of spacer DNA, and not randomly. Based on the abundance of small repeats in yeast and from experiments with nucleosome oligomers, we conclude that the extended ladder and nucleosomal phasing probably arise mainly from regions in the chromatin in which nucleosome cores are closely packed or closely spaced (140-160 bp X n). Contributions from less closely packed but still accurately phased nucleosomes, however, cannot be entirely excluded.  相似文献   

17.
The cation-induced refolding of the 100 A nucleosome filament into the 300 A filament has been studied over a wide range of concentrations of Na+, Mg2+, Co(NH3)3+6 and other cations. X-ray diffraction, electron microscopy and analytical ultracentrifugation have been used to determine the conditions under which the 300 A filament is formed. It is shown that cations induce chromatin refolding by acting as general DNA counterions. The concentration of any cation required to induce refolding is greatly dependent on the valence of that cation. Na+ (and, presumably, other monovalent cations) has dual effects: at high concentrations (greater than 45 to 65 mM) it stabilizes the 300 A filament state of chromatin; however, at low concentrations (less than approximately equal to 45 mM), when cations of higher valence are present and stabilizing the 300 A filament state, Na+ has the opposite effect, competing with the higher-valence cation for binding to the chromatin and destabilizing the 300 A filament state. It is shown that further addition of cations to chromatin in the 300 A filament state causes a further folding of the chromatin in which the sedimentation coefficient increases and the X-ray diffraction bands resulting from nucleosomal packing sharpen. This may reflect subtle structural changes within the 300 A filament, or it may reflect a shift in equilibrium constant for chromatin fluctuating between the 100 A and 300 A filament states. It is also shown that, with continued addition of cation, the 300 A filaments precipitate before any "endpoint" is reached in this further folding. The tendency of 300 A filaments to aggregate in vitro appears to be a built-in property, and may reflect the packing of 300 A filaments within metaphase chromosomes in vivo.  相似文献   

18.
The exact lengths of linker DNAs connecting adjacent nucleosomes specify the intrinsic three-dimensional structures of eukaryotic chromatin fibers. Some studies suggest that linker DNA lengths preferentially occur at certain quantized values, differing one from another by integral multiples of the DNA helical repeat, approximately 10 bp; however, studies in the literature are inconsistent. Here, we investigate linker DNA length distributions in the yeast Saccharomyces cerevisiae genome, using two novel methods: a Fourier analysis of genomic dinucleotide periodicities adjacent to experimentally mapped nucleosomes and a duration hidden Markov model applied to experimentally defined dinucleosomes. Both methods reveal that linker DNA lengths in yeast are preferentially periodic at the DNA helical repeat ( approximately 10 bp), obeying the forms 10n+5 bp (integer n). This 10 bp periodicity implies an ordered superhelical intrinsic structure for the average chromatin fiber in yeast.  相似文献   

19.
Sedimentation measurements and electron microscopy at a series of ionic strengths suggest that chromatin from neurons of the cerebral cortex is able to form condensed structures in vitro that are probably several turns of a solenoid with about six nucleosomes per turn. Since neuronal chromatin has a short nucleosomal repeat (approximately 165 bp) allowing virtually no linker DNA between nucleosomes, and yet forms apparently 'normal' elements of solenoid, the packing of nucleosomes in the solenoid must be highly constrained. This permits only a limited number of possible models, and enables tentative suggestions to be made about the location of the linker DNA in the typical solenoid.  相似文献   

20.
J Widom  A Klug 《Cell》1985,43(1):207-213
X-ray diffraction patterns have been obtained from partially oriented samples of 300A chromatin filaments. The chromatin was prepared by methods that preserve its structure, and conditions were found in which the 300A filaments spontaneously form ordered aggregates, so that it was not necessary to pull fibers. The diffraction patterns show a meridional band at 110A, and equatorial bands at 340, 57, 37, and 27A. These patterns, together with patterns calculated from the known 7A electron density map of the nucleosome core particle, imply side-to-side packing of nucleosomes in the direction of the 300A filament, and radial packing around it. These results are consistent with the "solenoid" model of Finch and Klug, and are inconsistent with many other proposed models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号