首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During growth of the facultative methylotroph Arthrobacter P1 on methylamine or ethylamine both substrates are metabolized initially in an identical fashion, via the respective aldehydes. The regulatory mechanisms governing the synthesis and activities of enzymes involved in amine and aldehyde utilization were studied in substrate transition experiments. Transfer of ethylamine-grown cells into a medium with methylamine resulted in immediate exeretion of low levels of formaldehyde (max. 0.5 mM) and formate. In the reverse experiment, transfer of methylaminegrown cells into a medium with ethylamine, excretion of much higher levels of acetaldehyde (max. 3.5 mM) occurred. These different levels of aldehyde accumulation were also observed in studies with mutants of Arthrobacter P1 blocked in the synthesis of hexulose phosphate synthase or acetaldehyde dehydrogenase. In wild type Arthrobacter P1, aldehyde production resulted in rapid induction of the synthesis of enzymes involved in their degradation but also in temporary inhibition of further amine utilization and growth. The latter aetivities only resumed at normal rates after the disappearance of the aldehydes from the cultures. Acetaldehyde utilization resulted in intermittent excretion of ethanol and acetate, whereas formaldehyde utilization resulted in further accumulation of formate.During growth of Arthrobacter P1 in the presence of methylamine accumulation of toxic levels of formaldehyde is prevented because of the rapid synthesis of hexulose phosphate synthase to high activities and, in transient state situations, by feedback inhibition of formaldehyde on the activities of the methylamine transport system and amine oxidase.Abbreviations DTNB 5,5-dithiobis-(2-nitrobenzoate) - HPS hexulosephosphate synthase - MS mineral salts - RuMP ribulose monophosphate  相似文献   

2.
Enterobacter hafniae and Aeromonas hydrophila ADPglucose synthetases were purified approximately 39-and 61-fold, respectively, over the crude extract. Both enzymes were heat stable at 60°C in the presence of inorganic phosphate. The molecular weights of both enzymes were approximately 200,000 which are similar to other enteric ADPglucose synthetases studied. Based on kinetic results obtained from the partially purified enzymes, the E. hafniae enzyme is activated twofold by phospho-enolpyruvate while the A. hydrophila enzyme is activated twofold by fructose 6-P and 1.5-fold by fructose 1,6 bis-phosphate. The E. hafniae enzyme activity is strongly inhibited by AMP and ADP and the inhibition can be partially reversed by P-enolpyruvate. ADP is the most effective inhibitor of the A. hydrophila enzyme and its inhibiton can be partially overcome by the presence of the activators fructose 6-P and fructose 1,6-P2. These kinetic results show that the allosteric properties of the E. hafniae enzyme are distinctly different from the ADPglucose synthetases of those previously studied from bacteria of the genus Enterobacter. Although the A. hydrophila enzyme is activated by fructose 1,6-P2, its allosteric properties are quite different than those observed for ADPglucose synthetase of the Enterobacteriaceae.Abbreviations Hepes N-2-hydroxyethylpiperazine-N-2-ethane-sulfonic acid - glucose 1-P glucose 1-phosphate - Bicine N,N-bis(2 hydroxyethyl)glycine - fructose 6-P fructose 6-phosphate - Mes 2(N-morpholino)-ethane sulfonic acid - fructose 1,6-P2 fructose 1,6 bis-phosphate - DTE dithioerythritol; pyridoxal-P, pyridoxal-phosphate - fructose 1-P fructose 1-phosphate - P-enolpyruvate phospho-enolpyruvate - 1,6 hexanediol bis-P 1,6 hexanediol bis-phosphate; glucose 6-P, glucose 6-phosphate - dihydroxyacetone-P dihydroxyacetone phosphate - 1-glycerol-3-P 1-glycerol-3-phosphate - erythrose 4-P erythrose 4-phosphate - 2-P-glycerate 2-phosphoglycerate - sedoheptulose 1,7-P2 sedoheptulose 1,7 bis-phosphate - 3-P-glycerate 3-phosphoglycerate - mannose-6-P mannose-6-phosphate  相似文献   

3.
Summary The synthesis of the transport systems (enzymeII-complexes) coded for in the mtl and in the gut (srl) operon was found to be induced by unphosphorylated D-mannitol and D-glucitol respectively. Induction from the outside however is only possible if these polyols are taken up into the cells. Induction of the D-mannitol system is immediate, resistant against catabolite repression, relatively insensitive towards transient repression and starts from a high uninduced level (5–30%). By contrast, the induction of the D-glucitol system starts at a low basal level (0.5–2.5%), does show a pronounced lag from 25 to 90 min, and is hypersensitive towards catabolite and transient repression. These differences apparently reflect primarely differences in the corresponding operator-promotor genes mtl(P,O) and gut(P,O) as well as differences in the uptake of the first, inducing hexitol molecules. For each operon additional regulatory genes exist, called mtlR and gutR respectively, in which transrecessive, temperature sensitive mutations leading to a constitutive expression of the corresponding operon can be found. The influence of these regulatory mechanisms in diauxie experiments and their importance for the differentiation of the three operons during evolution from apparently one common ancestor operon will be discussed.  相似文献   

4.
Summary The enzymatic properties ofNephthys hombergii lysozyme were compared with those of hen egg-white lysozyme. The observed results allowed to conclude that if similarities between both enzymes could be established (variation of the initial velocity of lysis as a function of the ionic strength, influence of urea and histamine), it was nevertheless possible to differentiate them clearly by their affinity constants forM. luteus cells, by the inhibitory power of N-acetylglucosamine and by their action on chitopentaose, chitotetraose and colloidal chitin.94th communication on lysozymes. This paper is based in part on a thesis submitted by J.-P. P. in partial fulfillment of the requirements for the degree of Docteur ès Sciences, Paris (AO 6057).  相似文献   

5.
Regulation of hexitol catabolism in Streptococcus mutans.   总被引:11,自引:2,他引:9       下载免费PDF全文
Regulation of hexitol catabolism was investigated in Streptococcus mutans, a cariogenic human dental plaque bacterium. Induction of hexitol catabolic enzymes and phosphoenolpyruvate:hexitol phosphotransferase and hexitol phosphate dehydrogenase activities was regulated by an inducer exclusion mechanism initiated by D-glucose and 2-deoxy-D-glucose. Kinetic analysis of the inhibitory effect of 2-deoxy-D-glucose on initial hexitol uptake illustrated that this was a noncompetitive type of inhibition. In mutant strains of S. mutans lacking phosphoenolpyruvate:glucose phosphotransferase activity, 2-deoxy-D-glucose was unable to inhibit hexitol uptake. These observations provide evidence for possible molecular mechanisms for the exclusion process.  相似文献   

6.
Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment d-ribitol (also called d-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates d-ribitol via a PTS. We identified an 11-kb region in the genome sequence of L. casei strain BL23 (LCABL_29160 to LCABL_29270) which is absent from strain ATCC 334 and which contains the genes for a GlpR/IolR-like repressor, the four components of a mannose-type PTS, and six metabolic enzymes potentially involved in d-ribitol metabolism. Deletion of the gene encoding the EIIB component of the presumed ribitol PTS indeed prevented d-ribitol fermentation. In addition, we overexpressed the six catabolic genes, purified the encoded enzymes, and determined the activities of four of them. They encode a d-ribitol-5-phosphate (d-ribitol-5-P) 2-dehydrogenase, a d-ribulose-5-P 3-epimerase, a d-ribose-5-P isomerase, and a d-xylulose-5-P phosphoketolase. In the first catabolic step, the protein d-ribitol-5-P 2-dehydrogenase uses NAD+ to oxidize d-ribitol-5-P formed during PTS-catalyzed transport to d-ribulose-5-P, which, in turn, is converted to d-xylulose-5-P by the enzyme d-ribulose-5-P 3-epimerase. Finally, the resulting d-xylulose-5-P is split by d-xylulose-5-P phosphoketolase in an inorganic phosphate-requiring reaction into acetylphosphate and the glycolytic intermediate d-glyceraldehyde-3-P. The three remaining enzymes, one of which was identified as d-ribose-5-P-isomerase, probably catalyze an alternative ribitol degradation pathway, which might be functional in L. casei strain 64H but not in BL23, because one of the BL23 genes carries a frameshift mutation.  相似文献   

7.
Biochemical consequences of mutational damage to common components of the Erwinia phosphoenolpyruvate-dependent phosphotransferase system (the HPr protein and enzyme I) were studied. The transport of glucose, mannose, fructose, and mannitol inErwinia was shown to require a preliminary induction of proteins of the phosphotransferase system. A drastic decrease in the rate of the transport of these carbohydrates was observed in ptsI and ptsH mutants. A disturbance in the common components suppresses the synthesis of inducible enzymes (-galactosidase, complexes of pectolate lyases and cellulases) and renders it resistant to catabolite repression by glucose, but mutants were shown to retain intracellular cAMP content. Erwinia mutants devoid of common components of the system lack phytopathogenic features. The appearance of an intact ptsI allele in the cell completely repaired pleiotropic disturbances in these mutants.  相似文献   

8.
ATPdiphosphohydrolases (ATPDases) are ubiquitous enzymes capable ofhydrolyzing nucleoside di- and triphosphates. Although a number ofpossible physiological roles have been proposed for ATPDases, detailedstudies on structure-function relationships have generally been hamperedby the lack of specific inhibitors of these enzymes. We have previouslycharacterized a Ca2+-activated ATPDase on the external surface ofthe tegument of Schistosoma mansoni, the etiologic agent of humanschistosomiasis. In the present work, we have examined the effectsof thapsigargin, a sesquiterpene lactone known as a high affinityinhibitor of sarco-endoplasmic reticulum calcium transport (SERCA)ATPase, on ATPDase activity. Whereas other lactones tested had littleor no inhibitory action, thapsigargin inhibited ATP hydrolysis by theATPDase (K i20 M). Interestingly, hydrolysis of ADP was notinhibited by thapsigargin. The lack of inhibition of ATPase activityby orthovanadate, a specific inhibitor of P-type ATPases, and theinhibition of the Mg2+-stimulated ATP hydrolysis by thapsigarginruled out the possibility that the observed inhibition of the ATPDaseby thapsigargin could be due to the presence of contaminating SERCAATPases in our preparation. Kinetic analysis indicated that a singleactive site in the ATPDase is responsible for hydrolysis of both ATPand ADP. Thapsigargin caused changes in both V max and K m for ATP,indicating a mixed type of inhibition. Inhibition by thapsigarginwas little or not affected by changes in free Ca2+ or Mg2+concentrations. These results suggest that interaction of thapsigarginwith the S. mansoni ATPDase prevents binding of ATP or its hydrolysisat the active site, while ADP can still undergo catalysis.  相似文献   

9.
A detailed kinetic study of the inhibitory effects ofl- andd-enantiomers of cysteate, cysteine sulphinate, homocysteine sulphinate, homocysteate, and S-sulpho-cysteine on the neuronal, astroglial and synaptosomal high-affinity glutamate transport system was undertaken.d-[3H] Aspartate was used as the transport substrate. Kinetic characterisation of uptake in the absence of sulphur compounds confirmed the high-affinity nature of the transport systems, the Michaelis constant (K m) ford-aspartate uptake being 6 M, 21 M and 84 M, respectively, in rat brain cortical synaptosomes and primary cultures of mouse cerebellar granule cells and cortical astrocytes. In those cases where significant effects could be demonstrated, the nature of the inhibition was competitive irrespective of the neuronal versus glial systems. The rank order of inhibition was essentially similar in synaptosomes, neurons and astrocytes. Potent inhibition (K iK m) of transport in each system was exhibited byl-cysteate, andl- andd-cysteine sulphinate whereas substantially weaker inhibitory effects (K i>10–1000 times the appropriateK m value) were exhibited by the remaining sulphur amino acids. In general, inhibition: (i) was markedly stereospecific in favor of thel-enantiomers (except for cysteine sulphinate) and (ii) was found to decrease with increasing chain length. Computer-assisted molecular modelling studies, in which volume contour maps of the sulphur compounds were superimposed on those ofd-aspartate andl-glutamate, demonstrated an order of inhibitory potency which was, qualitatively, in agreement with that obtained quantitatively by in vitro kinetic studies.Special issue dedicated to Dr. Elling Kvamme  相似文献   

10.
Azaserine-resistant mutants derived from a 5-fluorotryptophan-resistant, l-tryptophan-producing mutant of Brevibacterium flavum, accumulated 10.3 g/liter of l-tryptophan at maximum. The production increased to 11.4 g/liter when l-serine was added. In the mutant, only anthranilate synthase among enzymes of the tryptophan-specific bio synthetic pathway increased in activity to a 2-fold higher level than that in the parent strain, No. 187. Sensitivity of anthranilate synthase to the feedback inhibition was not altered by the mutation. Activity of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, the first common enzyme for aromatic amino acid biosynthesis, also increased 2.7-fold and was less sensitive to the feedback inhibition by phenylalanine and tyrosine. Tryptophan transport activity in strain A-100 was similar as that in the parent. Azaserine inhibited anthranilate synthase activity by 50% at 0.075 mm. The inhibition was of a mixed type with respect to both the two substrates. Anthranilate synthase of strain A-100 was inhibited in a similar manner to that of the parent.  相似文献   

11.
Summary Gut extracts of Gammarus fossarum liberated reducing substances (at pH values 7) and amino acids (pH7) from freshly shed oak leaves only after removal of soluble leaf phenols. When carboxymethylcellulose was used at a concentration equal to that of leaf cellulose, release of reducing substances was considerably higher. Fungal enzymes extracted from decomposing leaves were active against structural carbohydrates but showed no proteolytic activity. At low pH values, they retained their full activity in the presence of gut enzymes of G. fossarum, at higher pH values they were inhibited. Conditioned leaves released larger amounts of reducing substances and amino acids when exposed to gut enzymes. The improvement varies with the fungal species used for conditioning and with the length of the conditioning period. The digestibility of leaf carbohydrates and proteins reached separate peaks and then declined. Fungal carbohydrases ingested by G. fossarum retained some activity for up to 4h.  相似文献   

12.
Summary The flavonol quercetin, a phloretin analog, inhibits transport of 2-deoxyglucose and 3-O-methylglucose in a cultured human diploid fibroblast. This inhibition is related to transport itself and not to the reported effects of flavonoids on membrane-bound ATPases. From concentration-inhibition curves at several pH's we conclude that uncharged (acid) quercetin (pK=7.65) is the inhibitory form of the molecule (K I =10m). Quercetin, unlike phloretin, is rapidly degraded in 0.1n NaOH; the degradation products are weakly inhibitory to hexose transport.  相似文献   

13.
Feedback inhibition of crude and purified extracts of homoserine dehydrogenase and threonine deaminase activities in the genusBifidobacterium was studied. Homoserine dehydrogenase was partially or completely inhibited byl-threonine, and a marked inhibitory effect byl-isoleucine on threonine deaminase was observed. In the speciesBifidobacterium cuniculi high levels ofl-valine reversed the inhibitory effect ofl-isoleucine. The -aminobutyric acid-resistant mutant Ru 326/106 of the speciesB. ruminale, overproducer ofl-isoleucine, had a derepressed homoserine dehydrogenase and a lesser feedback inhibition byl-threonine. Homoserine dehydrogenase appeared to be in bifids specifically NAD dependent. The regulatory mechanisms of aspartate family amino acid biosynthesis in bifidobacteria was discussed.  相似文献   

14.
Summary The medullary pacemaker nucleus of the gymnotiform electric fish,Hypopomus, is a relatively simple neuronal oscillator which contains pacemaker cells and relay cells. The pacemaker cells generate a regular discharge cycle and drive the relay cells which trigger pulse-like electric organ discharges (EODs). The diencephalic prepacemaker nucleus (PPN) projects to the pacemaker nucleus and modulates its activity to generate a variety of specific discharge patterns which serve as communicatory signals (Figs. 2 and 3).While inducing such signals by microiontophoresis of L-glutamate to the region of the PPN (Fig. 4) of curarized animals, we monitored the activity of neurons in the pacemaker nucleus intracellularly. We found that pacemaker cells and relay cells were affected differently in a manner specific to the type of EOD modulation (Figs. 5–10). The normal sequence of pacemaker cell and relay cell firing was maintained during gradual rises and falls in discharge rate. Both types of cells ceased to fire during interruptions following a decline in discharge rate. During sudden interruptions, however, relay cells were steadily depolarized, while pacemaker cells continued to fire regularly. Short and rapid barrages of EODs, called chirps, were generated through direct and synchronous activation of the relay cells whose action potentials invaded pacemaker cells antidromically and interfered with their otherwise regular firing pattern.Abbreviations EOD electric organ discharge - HRP horseradish peroxidase - NMDA N-Methyl-D-Aspartate - PPN prepacemaker nucleus  相似文献   

15.
Regulatory properties of the enzymes involved in aromatic amino acid biosynthesis in the mutant of Corynebacterium glutamicum which produces a large amount of aromatic amino acids were examined. A phenylalanine auxotrophic l-tyrosine producer, pr-20, had a 3-deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthetase released from the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a two-fold derepressed chorismate mutase. A pair of l-phenylalanine and l-tyrosine still strongly inhibited the chorismate mutase activity, though the enzyme was partially released from the inhibition by l-phenylalanine alone. A tyrosine auxotrophic l-phenylalanine producer, PFP-19-31, had a DAHP synthetase sensitive to the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a prephenate dehydratase and a chorismate mutase both partially released from the feedback inhibition by l-phenylalanine. The mutant produced a large amount of prephenate as well as l-phenylalanine. A phenylalanine and tyrosine double auxotrophic l-tryptophan producer, Px-115-97, had an anthranilate synthetase partially released from the feedback inhibition by l-tryptophan and had a DAHP synthetase sensitive to the feedback inhibition. These data explained the mechanism of the production of aromatic amino acids by these mutants and supported the in vivo functioning of the control mechanisms of aromatic amino acid biosynthesis in C. glutamicum previously elucidated in vitro experiments.  相似文献   

16.
RH 5849, a non-steroidal ecdysteroid mimic, was found to cause consistent phase shifts in the circadian rhythm of locomotor activity of the blowfly, Calliphora vicina. This compound causes phase advances in the early subjective night and phase delays in the late subjective night. This effect is the opposite, but not the mirror image of the phase response curve obtained for 1 h light pulses. This suggests that ecdysteroids might act as entraining agents via the output pathway by feedback to clock neurons in the brain. A computer model based on 12 pacemaker neurons with circadian periods ( values) from short to long without simulated feedback from the ecdysteroid system becomes arrhythmic; with feedback, the oscillators become synchronized to a common period. The possible role of ecdysteroids as endogenous synchronizing agents in the insect circadian system is discussed.  相似文献   

17.
l-Glutamined-Fructose-6-P aminotransferase regulates hexosamine synthesis. An affinity purified human fibroblast aminotransferase and specific radioisotope assays developed by us were used to show an independent inhibition of the aminotransferase by Glucose-6-P. More interestingly, at concentration of UDP-N-Acetylglucosamine and glucose-6-P where either sugar has no independent inhibitory effect, there is an allosteric and significant inhibition of the aminotransferase.  相似文献   

18.
The broad-spectrum herbicide glyphosate inhibits the growth of Candida maltosa and causes the accumulation of shikimic acid and shikimate-3-phosphate. Glyphosate is a potent inhibitor of three enzymes of aromatic amino acid biosynthesis in this yeast. In relation to tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and dehydroquinate synthase, the inhibitory effect appears at concentrations in the mM range, but 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase is inhibited by micromolar concentrations of glyphosate. Inhibition of partially purified EPSP synthase reaction by glyphosate is competitive with respect to phosphoenolpyruvate (PEP) with a K i -value of 12 M. The app. K m for PEP is about 5-fold higher and was 62 M. Furthermore, the presence of glyphosate leads to derepression of many amino acid biosynthetic enzymes.Abbreviations DAHP 3-deoxy-D-arabino-heptulosonate 7-phosphate - EPSP synthase 5-enolpyruvylshikimate 3-phosphate synthase - PEP phosphoenolpyruvate - S-3-P shikimate-3-phosphate  相似文献   

19.
Adhya, Sankar (University of Wisconsin, Madison), and Harrison Echols. Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport. J. Bacteriol. 92:601-608. 1966.-The inhibitory effect of glucose on the induction of the enzymes required for galactose utilization ("glucose effect") was studied in Escherichia coli. Experiments on the uptake into the cell of labeled inducers (d-galactose-C(14) and d-fucose-H(3)) pointed to inhibition at the level of inducer transport as the possible primary mechanism of the glucose effect in the case of the gal enzymes. This interpretation was supported by the finding that a mutant constitutive for the lac enzymes was resistant to glucose inhibition of galactose induction of the gal enzymes; the mutant had acquired a glucose-resistant alternative transport mechanism for galactose via the constitutively synthesized galactoside permease. Further support for the transport inhibition model was provided by the finding that glucose did not substantially inhibit induction of the gal enzymes when glucose and galactose were produced intracellularly by beta-galactosidase hydrolysis of lactose, even if excess glucose was added. The inducer uptake experiments also showed that d-galactose and d-fucose probably enter the cell via different transport systems, although uptake of both compounds was inhibited by glucose.  相似文献   

20.
Summary The effect of an inhibitory factor (IF) fromAspergillus niger 19 on raw starch digestion by pure glucoamylase I of blackAspergillus, pure glucoamylae ofRhizopus niveus, bacterial -amylase, fungal -amylase and various combination was investigated. The IF caused higher inhibition of raw starch hydrolysis by the combined action of glucoamylase and fungal -amylase than of hydrolysis by the individual enzymes. A protein moiety of IF might play an active part in this inhibition phenomenon. The IF was bound to starch granules, preventing hydrolysis by the enzymes, and caused decreased raw starch hydrolysis yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号