首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was 1) to test the hypothesis that ventilation and arterial oxygen saturation (Sa(O2)) during acute hypoxia may increase during intermittent hypoxia and remain elevated for a week without hypoxic exposure and 2) to clarify whether the changes in ventilation and Sa(O2) during hypoxic exercise are correlated with the change in hypoxic chemosensitivity. Six subjects were exposed to a simulated altitude of 4,500 m altitude for 7 days (1 h/day). Oxygen uptake (VO2), expired minute ventilation (VE), and Sa(O2) were measured during maximal and submaximal exercise at 432 Torr before (Pre), after intermittent hypoxia (Post), and again after a week at sea level (De). Hypoxic ventilatory response (HVR) was also determined. At both Post and De, significant increases from Pre were found in HVR at rest and in ventilatory equivalent for O2 (VE/VO2) and Sa(O2) during submaximal exercise. There were significant correlations among the changes in HVR at rest and in VE/VO2 and Sa(O2) during hypoxic exercise during intermittent hypoxia. We conclude that 1 wk of daily exposure to 1 h of hypoxia significantly improved oxygenation in exercise during subsequent acute hypoxic exposures up to 1 wk after the conditioning, presumably caused by the enhanced hypoxic ventilatory chemosensitivity.  相似文献   

2.
Our aim was to isolate the independent effects of 1) inspiratory muscle work (W(b)) and 2) arterial hypoxemia during heavy-intensity exercise in acute hypoxia on locomotor muscle fatigue. Eight cyclists exercised to exhaustion in hypoxia [inspired O(2) fraction (Fi(O(2))) = 0.15, arterial hemoglobin saturation (Sa(O(2))) = 81 +/- 1%; 8.6 +/- 0.5 min, 273 +/- 6 W; Hypoxia-control (Ctrl)] and at the same work rate and duration in normoxia (Sa(O(2)) = 95 +/- 1%; Normoxia-Ctrl). These trials were repeated, but with a 35-80% reduction in W(b) achieved via proportional assist ventilation (PAV). Quadriceps twitch force was assessed via magnetic femoral nerve stimulation before and 2 min after exercise. The isolated effects of W(b) in hypoxia on quadriceps fatigue, independent of reductions in Sa(O(2)), were revealed by comparing Hypoxia-Ctrl and Hypoxia-PAV at equal levels of Sa(O(2)) (P = 0.10). Immediately after hypoxic exercise potentiated twitch force of the quadriceps (Q(tw,pot)) decreased by 30 +/- 3% below preexercise baseline, and this reduction was attenuated by about one-third after PAV exercise (21 +/- 4%; P = 0.0007). This effect of W(b) on quadriceps fatigue occurred at exercise work rates during which, in normoxia, reducing W(b) had no significant effect on fatigue. The isolated effects of reduced Sa(O(2)) on quadriceps fatigue, independent of changes in W(b), were revealed by comparing Hypoxia-PAV and Normoxia-PAV at equal levels of W(b). Q(tw,pot) decreased by 15 +/- 2% below preexercise baseline after Normoxia-PAV, and this reduction was exacerbated by about one-third after Hypoxia-PAV (-22 +/- 3%; P = 0.034). We conclude that both arterial hypoxemia and W(b) contribute significantly to the rate of development of locomotor muscle fatigue during exercise in acute hypoxia; this occurs at work rates during which, in normoxia, W(b) has no effect on peripheral fatigue.  相似文献   

3.
Andean high-altitude (HA) natives have a low (blunted) hypoxic ventilatory response (HVR), lower effective alveolar ventilation, and lower ventilation (VE) at rest and during exercise compared with acclimatized newcomers to HA. Despite blunted chemosensitivity and hypoventilation, Andeans maintain comparable arterial O(2) saturation (Sa(O(2))). This study was designed to evaluate the influence of ancestry on these trait differences. At sea level, we measured the HVR in both acute (HVR-A) and sustained (HVR-S) hypoxia in a sample of 32 male Peruvians of mainly Quechua and Spanish origins who were born and raised at sea level. We also measured resting and exercise VE after 10-12 h of exposure to altitude at 4,338 m. Native American ancestry proportion (NAAP) was assessed for each individual using a panel of 80 ancestry-informative molecular markers (AIMs). NAAP was inversely related to HVR-S after 10 min of isocapnic hypoxia (r = -0.36, P = 0.04) but was not associated with HVR-A. In addition, NAAP was inversely related to exercise VE (r = -0.50, P = 0.005) and ventilatory equivalent (VE/Vo(2), r = -0.51, P = 0.004) measured at 4,338 m. Thus Quechua ancestry may partly explain the well-known blunted HVR (10, 35, 36, 57, 62) at least to sustained hypoxia, and the relative exercise hypoventilation at altitude of Andeans compared with European controls. Lower HVR-S and exercise VE could reflect improved gas exchange and/or attenuated chemoreflex sensitivity with increasing NAAP. On the basis of these ancestry associations and on the fact that developmental effects were completely controlled by study design, we suggest both a genetic basis and an evolutionary origin for these traits in Quechua.  相似文献   

4.
The effect of exercise-induced arterial hypoxemia (EIAH) on quadriceps muscle fatigue was assessed in 11 male endurance-trained subjects [peak O2 uptake (VO2 peak) = 56.4 +/- 2.8 ml x kg(-1) x min(-1); mean +/- SE]. Subjects exercised on a cycle ergometer at >or=90% VO2 peak) to exhaustion (13.2 +/- 0.8 min), during which time arterial O2 saturation (Sa(O2)) fell from 97.7 +/- 0.1% at rest to 91.9 +/- 0.9% (range 84-94%) at end exercise, primarily because of changes in blood pH (7.183 +/- 0.017) and body temperature (38.9 +/- 0.2 degrees C). On a separate occasion, subjects repeated the exercise, for the same duration and at the same power output as before, but breathed gas mixtures [inspired O2 fraction (Fi(O2)) = 0.25-0.31] that prevented EIAH (Sa(O2) = 97-99%). Quadriceps muscle fatigue was assessed via supramaximal paired magnetic stimuli of the femoral nerve (1-100 Hz). Immediately after exercise at Fi(O2) 0.21, the mean force response across 1-100 Hz decreased 33 +/- 5% compared with only 15 +/- 5% when EIAH was prevented (P < 0.05). In a subgroup of four less fit subjects, who showed minimal EIAH at Fi(O2) 0.21 (Sa(O2) = 95.3 +/- 0.7%), the decrease in evoked force was exacerbated by 35% (P < 0.05) in response to further desaturation induced via Fi(O2) 0.17 (Sa(O2) = 87.8 +/- 0.5%) for the same duration and intensity of exercise. We conclude that the arterial O2 desaturation that occurs in fit subjects during high-intensity exercise in normoxia (-6 +/- 1% DeltaSa(O2) from rest) contributes significantly toward quadriceps muscle fatigue via a peripheral mechanism.  相似文献   

5.
Cerebral autoregulation is impaired in Himalayan high-altitude residents who live above 4,200 m. This study was undertaken to determine the altitude at which this impairment of autoregulation occurs. A second aim of the study was to test the hypothesis that administration of oxygen can reverse this impairment in autoregulation at high altitudes. In four groups of 10 Himalayan high-altitude dwellers residing at 1,330, 2,650, 3,440, and 4,243 m, arterial oxygen saturation (Sa(O(2))), blood pressure, and middle cerebral artery blood velocity were monitored during infusion of phenylephrine to determine static cerebral autoregulation. On the basis of these measurements, the cerebral autoregulation index (AI) was calculated. Normally, AI is between zero and 1. AI of 0 implies absent autoregulation, and AI of 1 implies intact autoregulation. At 1,330 m (Sa(O(2)) = 97%), 2,650 m (Sa(O(2)) = 96%), and 3,440 m (Sa(O(2)) = 93%), AI values (mean +/- SD) were, respectively, 0.63 +/- 0.27, 0.57 +/- 0.22, and 0.57 +/- 0.15. At 4,243 m (Sa(O(2)) = 88%), AI was 0.22 +/- 0.18 (P < 0.0005, compared with AI at the lower altitudes) and increased to 0.49 +/- 0.23 (P = 0.008, paired t-test) when oxygen was administered (Sa(O(2)) = 98%). In conclusion, high-altitude residents living at 4,243 m have almost total loss of cerebral autoregulation, which improved during oxygen administration. Those people living at 3,440 m and lower have still functioning cerebral autoregulation. This study showed that the altitude region between 3,440 and 4,243 m, marked by Sa(O(2)) in the high-altitude dwellers of 93% and 88%, is a transitional zone, above which cerebral autoregulation becomes critically impaired.  相似文献   

6.
This study tested the effects of inhaled nitric oxide [NO; 20 parts per million (ppm)] during normoxic and hypoxic (fraction of inspired O(2) = 14%) exercise on gas exchange in athletes with exercise-induced hypoxemia. Trained male cyclists (n = 7) performed two cycle tests to exhaustion to determine maximal O(2) consumption (VO(2 max)) and arterial oxyhemoglobin saturation (Sa(O(2)), Ohmeda Biox ear oximeter) under normoxic (VO(2 max) = 4.88 +/- 0.43 l/min and Sa(O(2)) = 90.2 +/- 0.9, means +/- SD) and hypoxic (VO(2 max) = 4.24 +/- 0.49 l/min and Sa(O(2)) = 75.5 +/- 4.5) conditions. On a third occasion, subjects performed four 5-min cycle tests, each separated by 1 h at their respective VO(2 max), under randomly assigned conditions: normoxia (N), normoxia + NO (N/NO), hypoxia (H), and hypoxia + NO (H/NO). Gas exchange, heart rate, and metabolic parameters were determined during each condition. Arterial blood was drawn at rest and at each minute of the 5-min test. Arterial PO(2) (Pa(O(2))), arterial PCO(2), and Sa(O(2)) were determined, and the alveolar-arterial difference for PO(2) (A-aDO(2)) was calculated. Measurements of Pa(O(2)) and Sa(O(2)) were significantly lower and A-aDO(2) was widened during exercise compared with rest for all conditions (P < 0.05). No significant differences were detected between N and N/NO or between H and H/NO for Pa(O(2)), Sa(O(2)) and A-aDO(2) (P > 0.05). We conclude that inhalation of 20 ppm NO during normoxic and hypoxic exercise has no effect on gas exchange in highly trained cyclists.  相似文献   

7.
In this study, we assessed the effects of chronic exercise training (12 wk) on atherosclerotic lesion formation in hypercholesterolemic apolipoprotein E-deficient mice (n = 31). At the age of 9 wk, mice were assigned to the following groups: sedentary (Sed; n = 9); exercise (Ex; n = 12); sedentary and oral NG-nitro-L-arginine (L-NNA, Sed-NA; n = 4), or exercise and oral L-NNA (Ex-NA; n = 6). Chronic exercise training was performed on a treadmill for 12 wk (6 times/wk and twice for 1 h/day) at a final speed of 22 m/min, and an 8 degrees grade. L-NNA was discontinued 5 days before final treadmill testing. The farthest distance run to exhaustion was observed in Ex-NA mice (Sed: 306 +/- 32 m; Ex: 640 +/- 87; Sed-NA: 451 +/- 109 m; Ex-NA: 820 +/- 49 m; all P < 0.05). Lesion formation was assessed in the proximal ascending aorta by dissection microscopy after oil red O staining. The aortas of Sed-NA mice manifested a threefold increase in lesion formation compared with the other groups. This L-NNA-induced lesion formation was reduced by chronic exercise training (Sed, 786 +/- 144; Ex, 780 +/- 206; Sed-NA, 2,147 +/- 522; Ex-NA, 851 +/- 253; Sed-NA vs. all other groups: P < 0.001). In conclusion, treatment with oral L-NNA (an nitric oxide synthase antagonist) leads to accelerated atherogenesis in genetically determined hypercholesterolemic mice. This adverse effect can be overcome by chronic exercise training.  相似文献   

8.
A possible contribution of exercise to the fluid retention associated with acute mountain sickness (AMS) was investigated in 17 mountaineers who underwent an exercise test for 30 min on a bicycle ergometer with a constant work load of 148 +/- 9 (SE) W at low altitude (LA) and with 103 +/- 6 W 4-7 h after arrival at 4,559 m or high altitude (HA). Mean heart rates during exercise at both altitudes and during active ascent to HA were similar. Exercise-induced changes at LA did not differ significantly between the eight subjects who stayed well and the nine subjects who developed AMS during a 3-day sojourn at 4,559 m. At HA, O2 saturation before (71 +/- 2 vs. 83 +/- 2%, P less than 0.01) and during exercise (67 +/- 2 vs. 72 +/- 1%, P less than 0.025) was lower and exercise-induced increase of plasma aldosterone (617 +/- 116 vs. 233 +/- 42 pmol/l, P less than 0.025) and plasma antidiuretic hormone (23.8 +/- 14.4 vs. 3.4 +/- 1.8 pmol/l, P less than 0.05) was greater in the AMS group, whereas exercise-induced rise of plasma atrial natriuretic factor and changes of hematocrit, potassium, and osmolality in plasma were similar in both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
High-altitude pulmonary edema (HAPE), a severe form of altitude illness that can occur in young healthy individuals, is a noncardiogenic form of edema that is associated with high concentrations of proteins and cells in bronchoalveolar lavage (BAL) fluid (Schoene et al., J. Am. Med. Assoc. 256: 63-69, 1986). We hypothesized that acute mountain sickness (AMS) in which gas exchange is impaired to a milder degree is a precursor to HAPE. We therefore performed BAL with 0.89% NaCl by fiberoptic bronchoscopy in eight subjects at 4,400 m (barometric pressure = 440 Torr) on Mt. McKinley to evaluate the cellular and biochemical responses of the lung at high altitude. The subjects included one healthy control (arterial O2 saturation = 83%), three climbers with HAPE (mean arterial O2 saturation = 55.0 +/- 5.0%), and four with AMS (arterial O2 saturation = 70.0 +/- 2.4%). Cell counts and differentials were done immediately on the BAL fluid, and the remainder was frozen for protein and biochemical analysis to be performed later. The results of this and of the earlier study mentioned above showed that the total leukocyte count (X10(5)/ml) in BAL fluid was 3.5 +/- 2.0 for HAPE, 0.9 +/- 4.0 for AMS, and 0.7 +/- 0.6 for controls, with predominantly alveolar macrophages in HAPE. The total protein concentration (mg/dl) was 616.0 +/- 3.3 for HAPE, 10.4 +/- 8.3 for AMS, and 12.0 +/- 3.4 for controls, with both large- (immunoglobulin M) and small- (albumin) molecular-weight proteins present in HAPE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The hypoxic exercise test combining a 4,800-m simulated altitude and a cycloergometer exercise at 30% of normoxic maximal aerobic power (MAP) is used to evaluate the individual chemosensitivity to hypoxia in submaximal exercise conditions. This test allows the calculation of three main parameters: the decrease in arterial oxygen saturation induced by hypoxia at exercise (ΔSa(e)) and the ventilatory (HVR(e)) and cardiac (HCR(e)) responses to hypoxia at exercise. The aim of this study was to determine the influence of altitude and exercise intensity on the values of ΔSa(e), HVR(e), and HCR(e). Nine subjects performed hypoxic tests at three simulated altitudes (3,000 m, 4,000 m, and 4,800 m) and three exercise intensities (20%, 30%, and 40% MAP). ΔSa(e) increased with altitude and was higher for 40% MAP than for 20% or 30% (P < 0.05). For a constant heart rate, the loss in power output induced by hypoxia, relative to ΔSa(e), was independent of altitude (4,000-4,800 m) and of exercise intensity. HVR(e) and HCR(e) were independent of altitude (3,000-4,800 m) and exercise intensity (20%-40% MAP). Moreover, the intraindividual variability of responses to hypoxia was lower during moderate exercise than at rest (P < 0.05 to P < 0.001). Therefore, we suggest that HVR(e) and HCR(e) are invariant parameters that can be considered as intrinsic physiological characteristics of chemosensitivity to hypoxia.  相似文献   

11.
We hypothesized that progesterone-mediated ventilatory stimulation during the midluteal phase of the menstrual cycle would increase exercise minute ventilation (VE; l/min) at sea level (SL) and with acute altitude (AA) exposure but would only increase arterial O2 saturation (SaO2, %) with AA exposure. We further hypothesized that an increased exercise SaO2 with AA exposure would enhance O2 transport and improve both peak O2 uptake (VO2 peak; ml x kg-1 x min-1) and submaximal exercise time to exhaustion (Exh; min) in the midluteal phase. Eight female lowlanders [33 +/- 3 (mean +/- SD) yr, 58 +/- 6 kg] completed a VO2 peak and Exh test at 70% of their altitude-specific VO2 peak at SL and with AA exposure to 4,300 m in a hypobaric chamber (446 mmHg) in their early follicular and midluteal phases. Progesterone levels increased (P < 0.05) approximately 20-fold from the early follicular to midluteal phase at SL and AA. Peak VE (101 +/- 17) and submaximal VE (55 +/- 9) were not affected by cycle phase or altitude. Submaximal SaO2 did not differ between cycle phases at SL, but it was 3% higher during the midluteal phase with AA exposure. Neither VO2 peak nor Exh time was affected by cycle phase at SL or AA. We conclude that, despite significantly increased progesterone levels in the midluteal phase, exercise VE is not increased at SL or AA. Moreover, neither maximal nor submaximal exercise performance is affected by menstrual cycle phase at SL or AA.  相似文献   

12.
We hypothesized that, in healthy subjects without pharmacological intervention, an overnight reduction in cerebrovascular CO(2) reactivity would be associated with an elevated hypercapnic ventilatory [ventilation (VE)] responsiveness and a reduction in cerebral oxygenation. In 20 healthy male individuals with no sleep-related disorders, continuous recordings of blood velocity in the middle cerebral artery, arterial blood pressure, VE, end-tidal gases, and frontal cortical oxygenation using near infrared spectroscopy were monitored during hypercapnia (inspired CO(2), 5%), hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 84%], and during a 20-s breath hold to investigate the related responses to hypercapnia, hypoxia, and apnea, respectively. Measurements were conducted in the evening (6-8 PM) and in the early morning (6-8 AM). From evening to morning, the cerebrovascular reactivity to hypercapnia was reduced (5.3 +/- 0.6 vs. 4.6 +/- 1.1%/Torr; P < 0.05) and was associated with a reduced increase in cerebral oxygenation (r = 0.39; P < 0.05) and an elevated morning hypercapnic VE response (r = 0.54; P < 0.05). While there were no overnight changes in cerebrovascular reactivity or VE response to hypoxia, there was greater cerebral desaturation for a given Sa(O(2)) in the morning (AM, -0.45 +/- 0.14 vs. PM, -0.35 +/- 0.14%/Sa(O(2)); P < 0.05). Following the 20-s breath hold, in the morning, there was a smaller surge middle cerebral artery velocity and cerebral oxygenation (P < 0.05 vs. PM). These data indicate that normal diurnal changes in the cerebrovascular response to CO(2) influence the hypercapnic ventilatory response as well as the level of cerebral oxygenation during changes in arterial Pco(2); this may be a contributing factor for diurnal changes in breathing stability and the high incidence of stroke in the morning.  相似文献   

13.
In contrast to their exercise-trained counterparts, the maximal oxidative rate of skeletal muscle in sedentary humans appears not to benefit from supplemental O(2) availability but is impacted by severe hypoxia, suggesting a metabolic limitation either at or below ambient O(2) levels. However, the critical level of O(2) availability at which maximal metabolic rate is reduced in sedentary humans is unknown. Using (31)P magnetic resonance spectroscopy and arterial oximetry, phosphocreatine (PCr) recovery kinetics and arterial oxygenation were assessed in six sedentary subjects performing 5-min bouts of plantar flexion exercise followed by 6 min of recovery. Each trial was repeated while breathing one of four different fractions of inspired O(2) (FI(O(2))) (0.10, 0.12, 0.15, and 0.21). The PCr recovery rate constant (a marker of oxidative capacity) was unaffected by reductions in FI(O(2)), remaining at a value of 1.5 +/- 0.2 min(-1) until arterial O(2) saturation (Sa(O(2))) fell to less than approximately 92%, the average value reached breathing an FI(O(2)) of 0.15. Below this Sa(O(2)), the PCr rate constant fell significantly by 13 and 31% to 1.3 +/- 0.2 and 1.0 +/- 0.2 min(-1) (P < 0.05) as Sa(O(2)) was reduced to 82 +/- 3 and 77 +/- 2%, respectively. In conclusion, this study has revealed that O(2) availability does not impact maximal oxidative rate in sedentary humans until the O(2) level falls well below that of ambient air, indicating a metabolic limitation in normoxia.  相似文献   

14.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

15.
The effect of a progressively increasing work rate (15 W X min-1) up to exhaustion on the time course of O2 uptake (VO2), ventilation (VE) and heart rate (HR) has been studied in weight lifters (WL) in comparison to endurance cyclists (Cycl) and sedentary controls (Sed). VO2 and VE were measured as average value of 30-s intervals by a semiautomatic open circuit method. VO2max was 2.55 +/- 0.33; 4.29 +/- 0.53 and 2.86 +/- 0.19 l X min-1 in WL, Cycl and Sed respectively. With time and work rate, while VO2 and HR increased linearly, VE changed its slope at two levels. The 1st VE change occurred at a work load corresponding to a mean (+/- SD) VO2 of 1.50 +/- 0.26; 1.93 +/- 0.34; and 1.23 +/- 0.14 l X min-1 in WL, Cycl, and Sed respectively. VO2 values corresponding to the second VE change of slope were 2.18 +/- 0.32 in WL; 3.48 +/- 0.53 in Cycl and 2.17 +/- 0.28 l X min-1 in Sed. The first change of slope might be the consequence of the different readjustment of VO2 on-response and hence of early lactate in the different subjects. The second change seems to be comparable to the conventional anaerobic threshold and is achieved in all subjects when VE vs time slope is 7-10 l X min-1/min of exercise.  相似文献   

16.
There is an expectation that repeated daily exposures to normobaric hypoxia (NH) will induce ventilatory acclimatization and lessen acute mountain sickness (AMS) and the exercise performance decrement during subsequent hypobaric hypoxia (HH) exposure. However, this notion has not been tested objectively. Healthy, unacclimatized sea-level (SL) residents slept for 7.5 h each night for 7 consecutive nights in hypoxia rooms under NH [n = 14, 24 ± 5 (SD) yr] or "sham" (n = 9, 25 ± 6 yr) conditions. The ambient percent O(2) for the NH group was progressively reduced by 0.3% [150 m equivalent (equiv)] each night from 16.2% (2,200 m equiv) on night 1 to 14.4% (3,100 m equiv) on night 7, while that for the ventilatory- and exercise-matched sham group remained at 20.9%. Beginning at 25 h after sham or NH treatment, all subjects ascended and lived for 5 days at HH (4,300 m). End-tidal Pco(2), O(2) saturation (Sa(O(2))), AMS, and heart rate were measured repeatedly during daytime rest, sleep, or exercise (11.3-km treadmill time trial). From pre- to posttreatment at SL, resting end-tidal Pco(2) decreased (P < 0.01) for the NH (from 39 ± 3 to 35 ± 3 mmHg), but not for the sham (from 39 ± 2 to 38 ± 3 mmHg), group. Throughout HH, only sleep Sa(O(2)) was higher (80 ± 1 vs. 76 ± 1%, P < 0.05) and only AMS upon awakening was lower (0.34 ± 0.12 vs. 0.83 ± 0.14, P < 0.02) in the NH than the sham group; no other between-group rest, sleep, or exercise differences were observed at HH. These results indicate that the ventilatory acclimatization induced by NH sleep was primarily expressed during HH sleep. Under HH conditions, the higher sleep Sa(O(2)) may have contributed to a lessening of AMS upon awakening but had no impact on AMS or exercise performance for the remainder of each day.  相似文献   

17.
Prevalence of excessive erythrocytosis, the main sign of chronic mountain sickness (CMS), is greater in postmenopausal Andean women than in premenopausal women. It is uncertain whether this greater prevalence is related to the decline in female hormones and ventilatory function after the occurrence of the menopause. To study this, we compared the physiological variables involved in the physiopathology of CMS [end-tidal CO(2) (PET(CO(2)), Torr) and end-tidal O(2) (PET(O(2)), Torr), arterial oxygen saturation (Sa(O(2)), %), and Hb concentration (g/dl)] and progesterone and estradiol levels between postmenopausal and premenopausal women, both in the luteal and follicular phases. Women residing in Cerro de Pasco (n = 33; 4,300 m) aged 26--62 yr were studied. Postmenopausal women compared with premenopausal women in the luteal phase had lower PET(O(2)) (48 +/- 4 vs. 53 +/- 2 Torr, P = 0.005) and Sa(O(2)) levels (82 +/- 12 vs. 88 +/- 12%, P < 0.005) and higher PET(CO(2)) (34 +/- 2 vs. 29 +/- 3 Torr, P = 0.005) and Hb concentration (19 +/- 1 vs. 14 +/- 2 g/dl, P < 0.005). In addition, plasma progesterone was negatively correlated with PET(CO(2)) and positively correlated with PET(O(2)) and Sa(O(2)). No clear relationship was found among the cycle phases between estradiol and the variables studied. In conclusion, our results reveal that, before menopause, there is better oxygenation and lower Hb levels in women long residing at altitude, and this is associated with higher levels of progesterone in the luteal phase of the cycle.  相似文献   

18.
Increased dependence on blood glucose after acclimatization to 4,300 m   总被引:5,自引:0,他引:5  
To evaluate the hypothesis that altitude exposure and acclimatization result in increased dependency on blood glucose as a fuel, seven healthy males (23 +/- 2 yr, 72.2 +/- 1.6 kg, mean +/- SE) on a controlled diet were studied in the postabsorptive condition at sea level (SL), on acute altitude exposure to 4,300 m (AA), and after 3 wk of chronic altitude exposure to 4,300 m (CA). Subjects received a primed continuous infusion of [6,6-2D]glucose and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the SL maximal O2 consumption (VO2 max; 65 +/- 2% of altitude VO2 max). At SL, resting arterial glucose concentration was 82.4 +/- 3.2 mg/dl and rose significantly to 91.2 +/- 3.2 mg/dl during exercise. Resting glucose appearance rate (Ra) was 1.79 +/- 0.02 mg.kg-1.min-1; this increased significantly during exercise at SL to 3.71 +/- 0.08 mg.kg-1.min-1. On AA, resting arterial glucose concentration (85.8 +/- 4.1 mg/dl) was not different from sea level, but Ra (2.11 +/- 0.14 mg.kg-1.min-1) rose significantly. During exercise on AA, glucose concentration rose to levels seen at SL (91.4 +/- 3.0 mg/dl), but Ra increased more than at SL (to 4.85 +/- 0.15 mg.kg-1.min-1; P less than 0.05). Resting arterial glucose was significantly depressed with CA (70.8 +/- 3.8 mg/dl), but resting Ra increased to 3.59 +/- 0.08 mg.kg-1.min-1, significantly exceeding SL and AA values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The intention of this study was to determine the metabolic consequences of reduced frequency breathing (RFB) at total lung capacity (TLC) in competitive cyclists during submaximal exercise at moderate altitude (1520 m; barometric pressure, PB = 84.6 kPa; 635 mm Hg). Nine trained males performed an RFB exercise test (10 breaths.min-1) and a normal breathing exercise test at 75-85% of the ventilatory threshold intensity for 6 min on separate days. RFB exercise induced significant (P less than 0.05) decreases in ventilation (VE), carbon dioxide production (VCO2), respiratory exchange ratio (RER), ventilatory equivalent for O2 consumption (VE/VO2), arterial O2 saturation and increases in heart rate and venous lactate concentration, while maintaining a similar O2 consumption (VO2). During recovery from RFB exercise (spontaneous breathing) a significant (P less than 0.05) decreases in blood pH was detected along with increases in VE, VO2, VCO2, RER, and venous partial pressure of carbon dioxide. The results indicate that voluntary hypoventilation at TLC, during submaximal cycling exercise at moderate altitude, elicits systemic hypercapnia, arterial hypoxemia, tissue hypoxia and acidosis. These data suggest that RFB exercise at moderate altitude causes an increase in energy production from glycolytic pathways above that which occurs with normal breathing.  相似文献   

20.
Endurance exercise training (Ex) has been shown to increase maximal skeletal muscle blood flow. The purpose of this study was to test the hypothesis that increased endothelium-dependent vasodilation is associated with the Ex-induced increase in muscle blood flow. Furthermore, we hypothesized that enhanced endothelium-dependent dilation is confined to vessels in high-oxidative muscles that are recruited during Ex. To test these hypotheses, sedentary (Sed) and rats that underwent Ex (30 m/min x 10% grade, 60 min/day, 5 days/wk, 8-12 wk) were studied using three experimental approaches. Training effectiveness was evidenced by increased citrate synthase activity in soleus and vastus lateralis (red section) muscles (P < 0.05). Vasodilatory responses to the endothelium-dependent agent acetylcholine (ACh) in situ tended to be augmented by training in the red section of gastrocnemius muscle (RG; Sed: control, 0.69 +/- 0.12; ACh, 1.25 +/- 0.15; Ex: control, 0.86 +/- 0.17; ACh, 1.76 +/- 0.27 ml x min(-1) x 100 g(-1) x mmHg(-1); 0.05 < P < 0.10 for Ex vs. Sed during ACh). Responses to ACh in situ did not differ between Sed and Ex for either the soleus muscle or white section of gastrocnemius muscle (WG). Dilatory responses of second-order arterioles from the RG in vitro to flow (4-8 microl/min) and sodium nitroprusside (SNP; 10(-7) through 10(-4) M), but not ACh, were augmented in Ex (vs. Sed; P < 0.05). Dilatory responses to ACh, flow, and SNP of arterioles from soleus and WG muscles did not differ between Sed and Ex. Content of the endothelial isoform of nitric oxide synthase (eNOS) was increased in second-order, fourth-order, and fifth-order arterioles from the RG of Ex; eNOS content was similar between Sed and Ex in vessels from the soleus and WG muscles. These findings indicate that Ex induces endothelial adaptations in fast-twitch, oxidative, glycolytic skeletal muscle. These adaptations may contribute to enhanced skeletal muscle blood flow in endurance-trained individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号