首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochemical methods have been used to quantitate total, acid-stable and acid-labile association of (mono[125I]iodoTyr10) glucagon with rat hepatocytes in suspension to evaluate internalization of glucagon and its receptors. Internalization is inhibited by low temperature, phenylarsine oxide, and by blocking receptor binding, consistent with receptor-mediated endocytosis. Approximately 30% of the total cell-associated hormone is internalized at 30 min of incubation. The rate declines until 90 min when the internalization of glucagon ceases, although the cells remain competent to internalize asialofetuin. From 90 min to 4 h, 27% of the maximum label internalized at 30 min remains within cells. The number of cell surface receptors decreases but the affinity of those remaining is unchanged. However, 1.7-2.7 surface receptors are lost to binding for each molecule of radiolabeled glucagon internalized. Uptake occurs according to a rate constant of 0.183 min-1 (t1/2 = 3.8 min). We conclude that (i) hepatocytes internalize a finite quantity of glucagon, implying the existence of undefined regulatory mechanisms; (ii) hormone is retained for greater than 2 h within cells and may play a physiological role within cells; and (iii) both occupied and unoccupied receptors become inaccessible to extracellular hormone as internalization proceeds; rapid recycling of receptors does not occur.  相似文献   

2.
3.
Insulin (10nM) completely suppressed the stimulation of gluconeogenesis from 2 mM lactate by low concentrations of glucagon (less than or equal to 0.1 nM) or cyclic AMP (less than or equal to 10 muM), but it had no effect on the basal rate of gluconeogenesis in hepatocyctes from fed rats. The effectiveness of insulin diminished as the concentration of these agonists increased, but insulin was able to suppress by 40% the stimulation by a maximally effective concentration of epinephrine (1 muM). The response to glucagon, epinephrine, or insulin was not dependent upon protein synthesis as cycloheximide did not alter their effects. Insulin also suppressed the stimulation by isoproterenol of cyclic GMP. These data are the first demonstration of insulin antagonism to the stimulation of gluconeogenesis by catecholamines. Insulin reduced cyclic AMP levels which had been elevated by low concentrations of glucagon or by 1 muM epinephrine. This supports the hypothesis that the action of insulin to inhibit gluconeogenesis is mediated by the lowering of cyclic AMP levels. However, evidence is presented which indicates that insulin is able to suppress the stimulation of gluconeogenesis by glucagon or epinephrine under conditions where either the agonists or insulin had no measurable effect on cyclic AMP levels. Insulin reduced the glucagon stimulation of gluconeogenesis whether or not extracellular Ca2+ were present, even though insulin only lowered cyclic AMP levels in their presence. Insulin also reduced the stimulation by epinephrine plus propranolol where no significant changes in cyclic AMP were observed without or with insulin. In addition, insulin suppressed gluconeogenesis in cells that had been preincubated with epinephrine for 20 min, even though the cyclic AMP levels had returned to near basal values and were unaffected by insulin. Thus insulin may not need to lower cyclic AMP levels in order to suppress gluconeogenesis.  相似文献   

4.
The rate constants for internalization of surface-bound asialo-orosomucoid by hepatocytes were 0.040 min-1 at 20 degrees C, 0.18 min-1 at 30 degrees C and 0.28 min-1 at 40 degrees C. At 40 degrees C, internalization accounted for most of the increase in cell-associated radioactivity. The activation energy over the temperature range 20 to 40 degrees C was 68 +/- 7 (S.D.) kJ/mol. At 10 degrees C, most of the cell-associated asialo-orosomucoid was bound to the cell surface in a reaction which followed ordinary chemical kinetics. Pre-incubation of hepatocytes with a large concentration of unlabelled asialo-orosomucoid did not influence the uptake of subsequently added 125I-asialofetuin; neither was degradation of 125I-asialo-fetuin affected in this experiment. The fractional rate of degradation (the fraction of cell-associated asialo-fetuin which was degraded per unit time) was constant over a twelve-fold range of intracellular asialo-fetuin concentrations. Increasing the temperature from 20 to 30 degrees C produced approximately a ten-fold increase in the rate of degradation of either asialo-fetuin or asialo-orosomucoid. The average activation energies of degradation over the range 20 to 40 degrees C were 125 kJ/mol for asialo-fetuin and 149 kJ/mol for asialo-orosomucoid; however, the Arrhenius plots were not straight lines over this temperature range.  相似文献   

5.
When hepatocytes were freshly isolated from rat liver and incubated for various periods of time at 37 degrees C, the media from the incubation, when completely separated from the cells, actively degraded 125I-insulin. THis soluble protease activity was strongly inhibited by bacitracin but was unaffected by the lysosomatropic agent ammonium chloride (NH4Cl). When hepatocytes were incubated with 125I-insulin at 37 degrees C in the presence or absence of 8 mM NH4Cl the ligand initially bound to the plasma membrane and was subsequently internalized as a function of time. When hepatocytes were incubated at 37 degrees C for 30 minutes with 125I-insulin in the presence of bacitracin and NH4Cl or bacitracin alone and the cells were washed, diluted, and the cell-bound radioactivity allowed to dissociate, the percent intact 125I-insulin in the cell pellet and in the incubation media was greater in the presence of NH4Cl at each time point of incubation. Under these same conditions a higher proportion of the cell-associated radioactivity was internalized and a higher proportion was associated with lysosomes. The data suggest that receptor-mediated internalization is required for insulin degradation by the cell, and that this process, at least in part, involves lysosomal enzymes. Furthermore, the data demonstrate that internalization is not blocked by the presence of bacitracin or NH4Cl in the incubation media, but that degradation is inhibited.  相似文献   

6.
Isolated rat hepatocytes were used to investigate the relationship between the effect of insulin on amino acid transport and hormone internalization. As previously observed with fibroblastic cells, 10 mM methylamine inhibited the clustering and internalization of the hormone-receptor complex in hepatocytes. Direct measurement of 125I-insulin binding indicated that methylamine did not decrease the binding capacity of the cells. When used at concentrations that did not affect the basal rate of α-aminoisobutyric acid transport, methylamine did not cause a specific decrease in the stimulation by insulin. The data indicate that the internalization of insulin is not required for the expression of its biological effect on amino acid transport.  相似文献   

7.
The role of substrate availability in the regulation of gluconeogenesis in isolated rat hepatocytes was studied using [U-14C]alanine as a tracer in the presence of different concentrations of L-alanine in the incubation medium. At low alanine concentrations (0.5 mM) insulin decreased the 14C incorporation into the glucose pool and increased the incorporation of tracer carbons into the protein and lipid pools and into CO2. The net radioactivity lost from the glucose pool was only a small percentage of the total increase in the activity of the protein, lipid, CO2, or glycogen pools, supporting the notion that the effect of insulin in diminishing gluconeogenesis is secondary to its effects on pathways using pyruvate. At higher concentrations of alanine (2.5, 5.0, and 10.0 mM) in the incubation medium insulin increased the movement of alanine carbons into protein and glucose. This suggests that at higher substrate concentrations the ability of the liver to synthesize proteins is overwhelmed and the pyruvate carbons are forced into the gluconeogenesis pathway. These results were further confirmed by using [U-14C]lactate. The increases in observed specific activity of glucose following insulin administration would not be possible if insulin acted by affecting the activity of any enzyme directly involved in the formation or utilization of pyruvate, most of which have been proposed as sites of insulin action. Data presented show that insulin "inhibits" gluconeogenesis by affecting a change in substrate availability.  相似文献   

8.
Quantitative structure toxicity relationship (QSTR) equations were obtained to predict and describe the cytotoxicity of 31 phenols using logLD(50) as a concentration to induce 50% cytotoxicity of isolated rat hepatocytes in 2 h and logP as octanol/water partitioning: logLD(50) (microM)=-0.588(+/-0.059)logP+4.652(+/-0.153) (n=27, r(2)=0.801, s=0.261, P<1 x 10(-9)). Hydroquinone, catechol, 4-nitrophenol, and 2,4-dinitrophenol were outliers for this equation. When the ionization constant pK(a) was considered as a contributing factor a two-parameter QSTR equation was derived: logLD(50) (microM)=-0.595(+/-0.051)logP+0.197(+/-0.029)pK(a)+2.665(+/-0.281) (n=28, r(2)=0.859, s=0.218, P<1 x 10(-6)). Using sigma+, the Brown variation of the Hammet electronic constant, as a contributing parameter, the cytotoxicity of phenols towards hepatocytes were defined by logLD(50) (microM)=-0.594(+/-0.052)logP-0.552(+/-0.085)sigma+ +4.540(+/-0.132) (n=28, r(2)=0.853, s=0.223, P<1 x 10(-6)). Replacing sigma+ with the homolytic bond dissociation energy (BDE) for (X-PhOH+PhO.-->X-PhO.+PhOH) led to logLD(50) (microM)=-0.601(+/-0.066)logP-0.040(+/-0.018)BDE+4.611(+/-0.166) (n=23, r(2)=0.827, s=0.223, P<0.05). Hydroquinone, catechol and 2-nitrophenol were outliers for the above equations. Using redox potential and logP led to a new correlation: logLD(50) (microM)=-0.529(+/-0.135)logP+2.077(+/-0.892)E(p/2)+2.806(+/-0.592) (n=15, r(2)=0.561, s=0.383, P<0.05) with 4-nitrophenol as an outlier. Our findings indicate that phenols with higher lipophilicity, BDE, or sigma+ values or with lower pK(a) and redox potential were more toxic towards hepatocytes. We also showed that a collapse of hepatocyte mitochondrial membrane potential preceded the cytotoxicity of most phenols. Our study indicates that one or a combination of mechanisms; i.e. mitochondrial uncoupling, phenoxy radicals, or phenol metabolism to quinone methides and quinones, contribute to phenol cytotoxicity towards hepatocytes depending on the phenol chemical structure.  相似文献   

9.
One- and two-parameter quantitative structure toxicity relationship (QSTR) equations were obtained to describe the cytotoxicity of isolated rat hepatocytes induced by 23 catechols in which LD(50) represents the catechol concentration required to induce 50% cytotoxicity in 2 h. A QSTR equation logLD(50) (microM = - 0.464(+/-0.065) log P + 3.724(+/-0.114) (n = 20, r(2) = 0.740, s(y,x) = 0.372, P < 1 x 10(-6), outliers: 4-methoxycatechol, 3-methoxycatechol, L-dopa) was derived where logP represents octanol/water partitioning. Outliers were determined by adopting a statistical method to standardize the identification of outliers. When pK(a1), the first ionization constant, was considered as a contributing parameter a two-parameter QSTR equation was derived: logLD(50) (microM = - 0.343(+/-0.058) log P - 0.116(+/-0.041) pK(a1)+4.389 (+/-0.315) (n = 22, r(2) = 0.738, s(y,x) = 0.375, P < 0.01, outlier: 4-methoxycatechol). Replacing logP with logD(7.4), the partition coefficient at pH 7.4, improved the first correlation by limiting the outlier to 4-methoxycatechol: logLD(50) (microM)=-0.252(+/-0.039) logD(7.4)+3.168(+/-0.090) (n = 22, r(2) = 0.671, s(y,x) = 0.420, P < 1 x 10(-5). In this study, 4-methoxycatechol (readily autooxidizable) was found to be an outlier for all QSTR equations derived. These findings point to lipophilicity and pK(a1) as two important characteristics of catechols that can be used to predict their cytotoxicity towards isolated rat hepatocytes. The catechols with the higher lipophilicity/distribution coefficient, the lower degree of ionization and the higher pK(a(catechol)) were more toxic towards hepatocytes than the other catechols.  相似文献   

10.
When freshly isolated hepatocytes are incubated with [125I]insulin in the presence of the microtubule-disrupting agent colchicine, internalization of the labelled hormone is not significantly altered. However, the drug limits the endocytosis of the labelled material to a peripheral band of cytoplasm extending 1 micron beyond the plasma membrane. Both in the presence and absence of colchicine, internalized [125I]insulin preferentially associates with clear vesicles (endosomes) and lysosome-like structures, but the relative amount of labelled material associated with clear vesicles is higher in the presence of the drug than in its absence. An inverse pattern is observed for the lysosome-like structures. As demonstrated by cytochemical methods, clear vesicles do not contain the lysosomal enzyme aryl sulfatase. Moreover, colchicine induces an increase of the clear vesicle diameter without affecting their frequency, while it perturbs multivesicular bodies and dense bodies in an opposite way by increasing their frequency without affecting their size. By reducing and/or delaying the fusion between internalized endocytotic vesicles and lysosomes, colchicine allows better characterization of the endosomal compartment of isolated rat hepatocytes and allows it to be distinguished from other compartments, such as multivesicular bodies and the Golgi apparatus.  相似文献   

11.
Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is a most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones at isolated rat hepatocytes, the internalization time course of 125I-insulin and 125I-IGF-I are traced at 37 and 12°C. There are established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37°C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. But essential differences in the internalization course of these two related peptides were obvious at the temperature of 12°C. The internalization level of insulin receptors at 12°C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocyte plasma membrane. At 12°C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12°C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar “inhibition mechanism” of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to action of cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.  相似文献   

12.
The effects of colchicine, an inhibitor of microtubule polymerization, on the maintenance of steady state binding of insulin to isolated hepatocytes was studied. Colchicine (10?5M) produced a 35–45% decrease in binding in presence of insulin (10?8M) at 37°C. This decrease in binding was time and temperature dependent. The decrease was also dependent on the amount of insulin bound to the cell. The results suggest that colchicine may prevent the maintenance of steady state binding of insulin by impairing transfer of newly synthesized or recycled receptor from within the cell to the plasma membrane.  相似文献   

13.
A combined morphometric and biochemical approach has been used to identify and quantitate microtubules and tubulin in isolated hepatocytes. The total soluble pool of microtubule protein was estimated by specific high affinity binding to radiolabeled colchicine. Scatchard analysis of the data identified two populations of binding sites: high affinity-low capacity sites resembling tubulin and low affinity-high capacity sites believed to represent nonspecific colchicine-binding sites. Data from these studies indicate that tubulin represents 1% of the soluble protein of the cell, that 9.0 X 10(-14) dimers of tubulin are present per microgram soluble hepatocyte protein, and that the average hepatocyte contains 3.1 X 10(7) tubulin dimers. Our calculations suggest that this amount of tubulin would form a microtubule 1.9 cm in length if totally assembled. However, stereological measurements indicate that the actual length of microtubules in the cytosolic compartment of the average hepatocyte is only 0.28 cm. Thus, these experiments suggest that only 15% of the available tubulin in hepatocytes of postabsorptive rats is assembled in the form of microtubules.  相似文献   

14.
The effect of insulin on 32Pi incorporation into phospholipids in various subcellular sites of isolated rat hepatocytes was investigated. After labeling the phospholipids of hepatocytes from rats previously starved for 24 h with 32Pi (10 mu Ci/10(6) cells) for 90 min, either saline or insulin (32 nM) was added. Following incubations of 1, 5, and 30 min, chilled cells were rapidly washed, homogenized in the presence of inhibitors of phospholipid degradation, and fractionated into the major subcellular organelles. Phospholipids were extracted from plasma membranes, microsomes, lysosomes, mitochondria, and nuclei with acidic chloroform:methanol. The aqueous deacylation products were separated by anion exchange high performance liquid chromatography, and the 32Pi incorporated into all the major diacylglycerophospholipids was determined. In parallel experiments, the specific radioactivity of 32Pi and [gamma-32P]ATP was determined. The results revealed that insulin had no effect on the turnover of the major phospholipids, including the polyphosphoinositides, of all subcellular compartments analyzed relative to the control. In addition, there were no significant differences in the amount and 32P labeling of cellular orthophosphate between saline- and insulin-treated cells. The specific radioactivity of [gamma-32P]ATP was increased by 20% after 30-min treatment with insulin, requiring appropriate correction of 32P-labeled phosphatidic acid, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate for estimation of mass changes at near steady-state labeling of cellular ATP.  相似文献   

15.
We have investigated the dissociation, internalization, and degradation of 125I-interleukin-6 (125I-IL-6) by primary rat hepatocytes. Temperature shift experiments following saturation binding of 125I-IL-6 to cell surface receptors in hepatocytes showed a rapid loss of surface-bound 125I-IL-6 (t1/2 = 15 min), concomitant with a rapid rise in internalized radiolabeled ligand. After reaching a maximum by 30 min at 37 degrees C, the level of internalized 125I-IL-6 decreased with time and appeared in the culture media in a non-trichloroacetic acid-precipitable (degraded) state. The addition of the lysosomotropic agent chloroquine inhibited this receptor-mediated degradation of IL-6 without affecting ligand internalization. Polyacrylamide gel electrophoresis analysis of internalized 125I-IL-6 confirms these results. Additionally, we show that the IL-6.IL-6 receptor complex is stable, and dissociation of these two molecular species occurs at a pH below 5.0. In contrast to published results, data presented in this study clearly indicate that IL-6 is rapidly internalized and degraded within hepatocytes by a receptor-mediated mechanism.  相似文献   

16.
Isolated rat hepatocytes were prepared in KHB buffer, pH 7.4; were centrifuged and washed twice in KHB buffer containing various amounts of phosphate and calcium; and were incubated at 30 degrees in the presence of tracer [2,3-14C]succinate and a 0.5 mM concentration of each of the 20 natural amino acids. Hepatocytes washed and incubated in KHB buffer containing less than 0.1 mM phosphate failed to show any insulin stimulation of [2,3-14C]succinate oxidation or protein incorporation of tracer carbons. The absence or presence of extracellular phosphate did not alter the specific activity of 32P-adenine nucleotides; they remained the same in the presence or absence of insulin. The maximal insulin stimulatory effect on succinate oxidation and tracer incorporation into protein was observed in the presence of 1.18 mM phosphate and 1.9 mM calcium ion. The lack of external phosphate did not prevent the stimulation of succinate oxidation by either glucagon on epinephrine, whereas removal of calcium from the medium abolished their hormonal effects. The lack of medium calcium also prevented the insulin stimulation of succinate oxidation and protein synthesis. Our data indicate that a diminished insulin responsiveness in hypophosphatemic patients may be due to the insensitivity of mitochondria to insulin in the hypophosphatemic state.  相似文献   

17.
Freshly isolated rat hepatocytes incubated in a medium containing bovine serum albumin partially purified by charcoal treatment at pH 3 are three times more responsive to insulin with regard to alpha-aminoisobutyric acid uptake than those incubated in medium containing regular bovine serum albumin. This finding should facilitate future work in isolated hepatocytes, a cell system that for the most part has been considered relatively unresponsive to insulin.  相似文献   

18.
19.
Quantitative aspects of de novo pyrimidine biosynthesis in rat hepatocytes were monitored. A reduction of intracellular UTP contents by different concentrations of D-galactosamine led to a dose-dependent increase of 14CO2 incorporation into the sum of all acid-soluble uracil nucleotides. In controls the rate of de novo synthesis which was calculated from the incorporation rate of 14CO2 into the sum of all acid-soluble uracil nucleotides was 0.014 mumol X h-1 X g-1 compared to 0.056 mumol X h-1 X g-1 wet weight of liver in situations of a maximally stimulated de novo synthesis. Incubation of hepatocytes with uridine led to a dose-dependent reduction of 14CO2 incorporation to less than 25% of the amount incorporated in the controls. Alterations of the CTP content had no influence on the 14CO2 incorporation. In the presence of high D-galactosamine concentrations the increase of the total amount of acid-soluble uracil nucleotides exceeded the rate of the de novo synthesis derived from the incorporation of 14CO2 into the sum of the acid-soluble uracil nucleotide pool. It was also greater than the increase of the total amount of intra- and extracellular orotate after acidic hydrolysis--even in the presence of 6-azauridine, which stimulated de novo pyrimidine biosynthesis by itself.  相似文献   

20.
Summary In this paper, data dealing with the sensitivity of autophagy towards partial ATP depletion in isolated rat hepatocytes are reviewed. Partial reduction of intracellular ATP causes: (1) a decrease of proteolytic flux; (2) a decrease in uptake of cytosolic components into the autophagic-lysosomal compartment; (3) either a decrease or no change in the ratio between volume densities of autophagosomes and lysosomes, depending on whether or not the cytosolic phosphate potential is affected; and (4) impairment of the lysosomal proton pump. It is concluded that the consecutive steps of autophagy all respond to relatively small changes of intracellular ATP concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号