首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
The aim of this work was to assess the sporulation and diversity of arbuscular mycorrhizal fungi (AMF) at different forest sites with Araucaria angustifolia (Bert.) O. Ktze. (Brazil Pine). In addition, a greenhouse experiment was carried out to test the use of traditional trap plants (maize + peanut) or A. angustifolia to estimate the diversity of AMF at each site. Soil samples were taken in two State Parks at southwestern Brazil: Campos do Jordão (Parque Estadual de Campos do Jordão [PECJ]) and Apiaí (Parque Estadual Turístico do Alto Ribeira [PETAR]), São Paulo State, in sites of either native or replanted forest. In PECJ, an extra site of replanted forest that was impacted by accidental fire and is now in a state of recuperation was also sampled. The spore densities and their morphological identification were compiled at each site. In the greenhouse, soil samples from each site were used as inoculum to promote spore multiplication on maize + peanut or A. angustifolia grown on a sandy, low-fertility substrate. Plants were harvested, respectively, after 4 months or 1 year of growth and assessed for mycorrhizal root colonization. Spore counts and identification were also performed in the substrate, after the harvest of plants. Twenty-five taxa were identified considering all sites. Species richness and diversity were greater in native forest areas, being Acaulospora, the genus with the most species. Differences in number of spores, diversity, and richness were found at the different sites of each State Park. Differences were also found when maize + peanut or A. angustifolia were used as trap plants. The traditional methodology using trap plants seems to underestimate the diversity of the AMF. The use of A. angustifolia as trap plant showed similar species richness to the field in PECJ, but the identified species were not necessarily the same. Nevertheless, for PETAR, both A. angustifolia and maize + peanut underestimated the species richness. Because the AMF sporulation can be affected by many conditions, it is impossible to draw detailed conclusions from this kind of survey. More precise experiments have to be set up to isolate the different factors that modulate the ecophysiological interactions between host plant and endophyte.  相似文献   

2.
A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.  相似文献   

3.
In the past few decades, it has been widely accepted that forest loss due to human actions alter the interactions between organisms. We studied the relationship between forest fragment size and arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) colonization, and the AMF spore communities in the rhizosphere of two congeneric Euphorbia species (native and exotic/invasive). We hypothesized that these fungal variables will differ with fragment size and species status, and predicted that (a) AMF and DSE colonization together with AMF spore abundance and diversity would be positively related to forest fragment size; (b) these relationships will differ between the exotic and the native species; and (c) there will be a negative relationship between forest fragment size and the availability of soil nutrients (NH4 +, NO3 , and phosphorus). This study was performed in the eight randomly selected forest fragments (0.86–1000 ha), immersed in an agricultural matrix from the Chaquean region in central Argentina. AMF root colonization in the native and exotic species was similar, and was positively related with forest fragment size. Likewise, AMF spore diversity and spore abundance were higher in the larger fragments. While DSE root colonization in the native host was positively related with forest fragment size, DSE colonization in the exotic host showed no relationship. Soil nutrients contents were negatively related with forest fragment size. In addition, NH4 + and NO3 were negatively correlated with AMF spores abundance and root colonization and with DSE colonization in the native species. The results observed in this study show how habitat fragmentation might affect the interaction between key soil components, such as rhizospheric plant-fungal symbiosis and nutrient availability. These environmental changes may have important consequences on plant community composition and nutrient dynamics in this fragmented landscape.  相似文献   

4.
The effect of cultivation of mycorrhizal and non-mycorrhizal plants and mineral fertilization on the arbuscular mycorrhizal fungal (AMF) community structure of maize (Zea mays L.) plants was studied. Soil samples were collected from two field experiments treated for 5 years with three fertilization systems (Control – no fertilization; Mineral – NPK fertilization; and Organic – Farmyard manure fertilization). Soil samples containing soil and root fragments of rapeseed (Brassica napus L., non-mycorrhizal plant) and wheat (Triticum aestivum L., mycorrhizal plant) collected from the field plots were used as native microbial inoculum sources to maize plants. Maize plants were sown in pots containing these inoculum sources for four months under glasshouse conditions. Colonization of wheat roots by AMF, AMF community structure, AMF diversity (Shannon’s index), AMF dominance (Simpson’s index) and growth of maize were investigated. Sixteen AMF species were identified from rhizosphere soil samples as different species of genera Acaulospora, Claroideoglomus, Dentiscutata, Funneliformis, Gigaspora, Quatunica, Racocetra, and Rhizoglomus. Maize plants grown in manure-fertilized soils had a distinct AMF community structure from plants either fertilized with mineral NPK-fertilizer or non-fertilized. The results also showed that inoculum from non-mycorrhizal plants combined with mineral fertilization decreased AMF diversity (Shannon’s index), AMF dominance (Simpson’s index) and growth of maize. Our findings suggest that non-mycorrhizal plants, such as B. napus, can negatively affect the presence and the effects of soil inoculation on maize growth. Also, our results highlight the importance of considering the long-term effect of rapeseed cultivation system on the reduction of population sizes of infective AMF, and its effect on succeeding annual crops.  相似文献   

5.
Semi-arid tropical soils, characterized by low soil organic carbon (SOC) with limited available macronutrients and micronutrients for crop plants, are predicated to have a yield sustainability problem in the future due to intensive cropping and limited nutrient management adoptions. Arbuscular mycorrhizal fungi (AMF), the functional link between plant and soil, play a pivotal role in nutrient cycling, organic matter stabilization and soil structure and fertility improvement. Hence, so far unexplored or underutilized, native AMF could be a potential resource for fertility management of these semi-arid tropical soils. Hence, in the present investigation, we assessed the abundance and diversity of AMF in phosphorus-deficient agricultural soils of semi-arid tropics of southern India. Our results show that the spore density and infective propagules of AMF were relatively low in these soils. The morpho-typing of extracted AMF spores revealed that these soils were dominated by glomeraceae (six species of Glomus) while species of Gigaspora, Scutellospora and Acaulospora were found in low abundance. The diversity indices assessed for the AMF species were also globally low. The non-metric multi-dimensional scaling and hierarchical cluster analysis of species richness showed variation in the community composition of AMF in the soils. The principal component analysis of the assessed soil variables suggest that the available phosphorus (P), SOC and dehydrogenase and alkaline phosphatase activities had negative impact on spore density and infective propagules of AMF with no effect on species diversity. The regression analyses reveal that the available P is the significant soil variable that drives the AMF abundance and infectivity. This study opens the possibilities of effective utilization of native mycorrhizae for agriculture in semi-arid tropical soils.  相似文献   

6.
To better understand the diversity and species composition of arbuscular mycorrhizal fungi (AMF) in mangrove ecosystems, the AMF colonization and distribution in four semi-mangrove plant communities were investigated. Typical AMF hyphal, vesicle and arbuscular structures were commonly observed in all the root samples, indicating that AMF are important components on the landward fringe of mangrove habitats. AMF spores were extracted from the rhizospheric soils, and an SSU rDNA fragment from each spore morph-type was amplified and sequenced for species identification. AMF species composition and diversity in the roots of each semi-mangrove species were also analyzed based on an SSU-ITS-LSU fragment, which was amplified, cloned and sequenced from root samples. In total, 11 unique AMF sequences were obtained from spores and 172 from roots. Phylogenetic analyses indicated that the sequences from the soil and roots were grouped into 5 and 14 phylotypes, respectively. AMF from six genera including Acaulospora, Claroideoglomus, Diversispora, Funneliformis, Paraglomus, and Rhizophagus were identified, with a further six phylotypes from the Glomeraceae family that could not be identified to the genus level. The AMF genus composition in the investigated semi-mangrove communities was very similar to that in the intertidal zone of this mangrove ecosystem and other investigated mangrove ecosystems, implying possible fungal adaptation to mangrove conditions.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) from the rhizosphere of the endemic Laurisilva tree, Picconia azorica, were characterised at two sites in each of two Azorean islands (Terceira and São Miguel). Forty-six spore morphotypes were found, and DNA extraction was attempted from individual spores of each of these. DNA was obtained from 18 of the morphotypes, from which a 1.5 kb long fragment of the nuclear ribosomal RNA gene (SSU-ITS-LSU) was sequenced. A total of 125 AMF sequences were obtained and assigned to 18 phylotypes. Phylogenetic analysis revealed sequences belonging to the families, Acaulosporaceae, Archaeosporaceae, Claroideoglomeraceae, Gigasporaceae and Glomeraceae. Phylotype richness changed between islands and between sampling sites at both islands suggesting that geographical and historical factors are determinant in shaping AMF communities in native forest of Azores. Ecological analysis of the molecular data revealed differences in AMF community composition between islands. In Terceira, the rhizosphere of P. azorica was dominated by species belonging to Acaulosporaceae and Glomeraceae, while São Miguel was dominated by members of Glomeraceae and Gigasporaceae. This is the first molecular study of AMF associated with P. azorica in native forest of the Azores. These symbiont fungi are key components of the ecosystem. Further research is needed to develop their use as promoters of plant establishment in conservation and restoration of such sites.  相似文献   

8.
In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant–AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p?=?0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p?<?0.001). To investigate possible mechanisms by which AMF increased survival, we analyzed water use efficiency (WUE) based on foliar 13C/12C isotope ratios (δ 13C). A positive correlation between AMF colonization and δ 13C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ 13C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p?=?0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non-inoculated seedlings (p?=?0.047). These results indicate that inoculation can increase AMF colonization over the background levels occurring in the soil, leading to higher rates of survival.  相似文献   

9.
Long-lived radionuclides such as 90Sr and 137Cs can be naturally or accidentally deposited in the upper soil layers where they emit β/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.37, 30.35, and 113.03 Gy gamma radiation from a 137Cs source. Exposed spores were subsequently inoculated to Plantago lanceolata seedlings in pots, and root colonization and P uptake evaluated. P. lanceolata seedlings inoculated with non-irradiated AMF spores or with spores irradiated with up to 30.35 Gy gamma radiation had similar levels of root colonization. Spores irradiated with 113.03 Gy gamma radiation failed to colonize P. lanceolata roots. P content of plants inoculated with non-irradiated spores or of plants inoculated with spores irradiated with up to 30.35 Gy gamma radiation was higher than in non-mycorrhizal plants or plants inoculated with spores irradiated with 113.03 Gy gamma radiation. These results demonstrate that spores of R. irregularis MUCL 41833 are tolerant to chronic ionizing radiation at high doses.  相似文献   

10.
Fertilization has been shown to have suppressive effects on arbuscular mycorrhizal fungi (AMF) and root hemiparasites separately in numerous investigations, but its effects on AMF in the presence of root hemiparasites remain untested. In view of the contrasting nutritional effects of AMF and root hemiparasites on host plants, we tested the hypothesis that fertilization may not show strong suppressive effects on AMF when a plant community was infested by abundant hemiparasitic plants. Plants and soil samples were collected from experimental field plots in Bayanbulak Grassland, where N and P fertilizers had been applied for three continuous years for control against a spreading root hemiparasite, Pedicularis kansuensis. Shoot and root biomass of each plant functional group were determined. Root AMF colonization levels, soil spore abundance, and extraradical hyphae length density were measured for three soil depths (0-10 cm, 10-20 cm, 20-30 cm). Partial 18S rRNA gene sequencing was used to detect AMF diversity and community composition. In addition, we analyzed the relationship between relative abundance of different AMF genera and environmental factors using Spearman's correlation method. In contrast to suppressive effects reported by many previous studies, fertilization showed no significant effects on AMF root colonization or AMF species diversity in the soil. Instead, a marked increase in soil spore abundance and extraradical hyphae length density were observed. However, fertilization altered relative abundance and AMF composition in the soil. Our results support the hypothesis that fertilization does not significantly influence the abundance and diversity of AMF in a plant community infested by P. kansuensis.  相似文献   

11.
As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs.  相似文献   

12.

Background and aims

We studied, through exudates employment, the effect of Epichloë (endophytic fungi), both independently and in association with Bromus auleticus (grass), on arbuscular mycorrhizal fungi (AMF) colonization, host and neighbouring plants biomass production and soil changes.

Methods

Through in vitro and greenhouse experiments, Epichloë endophytes effect on AMF development was evaluated. In vitro studies of exudates effect on Gigaspora rosea and Rhizophagus intraradices were performed using root or endophyte exudates. A 6-month greenhouse experiment was conducted to determine Bromus auleticus endophytic status effect and endophyte exudates role in biomass production, neighbouring plants mycorrhizal colonization and soil properties.

Results

Endophyte exudates and E+ plant root exudates promoted in vitro AMF development in the pre-infective stage of G. rosea and in carrot root culture mycelium of R. intraradices in a dose-response relationship, while control media and E- plants exudates had no effect. R. intraradices colonization and plant growth was clearly increased by endophytes and their exudates.

Conclusions

This is the first work evidencing the direct effect of Epichloë endophytes and infected plants root exudates on AMF extramatrical development. While higher levels of AMF colonization were observed in E+ plants, no clear effect was detected in neighbouring plants colonization, plant biomass or soil properties.
  相似文献   

13.
Rates of land conversion from forest to cultivated land by slash-and-burn practices are higher in tropical dry forest (TDF) than any other Neotropical forest type. This study examined the short-term consequences of the slash-and-burn process on arbuscular mycorrhizal fungi (AMF). We expected that slash-and-burn would reduce mycorrhizal colonization and propagules and change species richness and composition. Soil and root samples were taken from TDF control and pasture plots originated after slash-and-burn at four dates during the year of conversion to examine species composition, spore abundance, and infective propagules. Additionally, spore abundance and viability and viable intraradical colonization were measured twice during the second year after conversion. Forest and pasture plots maintained similar species richness and an overall 84% similarity during the first year after conversion. Infective propagules were reduced in pasture plots during the first year after slash-and-burn, whereas spore abundance and intraradical colonization remained similar in TDF and pasture plots both years of the study. Our results suggest, contrary to the expected, that forest conversion by means of slash-and-burn followed by cultivation resulted in few immediate changes in the AMF communities, likely because of the low heat conductivity of the soil and rapid combustion of plant residues.  相似文献   

14.
Tropical dry forests are strongly affected by seasonality, but its effects on belowground communities are poorly studied. Thus, the objective of this study was to reveal the effect of the season (dry versus wet) on the mycorrhizal status of roots and their potential colonization, and to determine the composition and abundance of spore-based communities of arbuscular mycorrhizal fungi (AMF) in rhizospheric soil of two dominant woody species in caatinga communities (tropical dry forest of the Brazilian Northeast). Soil and root samples were taken four times in each season (dry and wet). In the cases of the number of glomerospores and the number of infective propagules of AMF, there were significant differences between the hosts, with greater values observed in the rhizosphere of Commiphora leptophloeos than Mimosa tenuiflora. Mycorrhizal colonization and the number of infective propagules of AMF differed also between the seasons, being higher in the dry than the wet season. In total, fourteen AMF species were found in the rhizosphere of C. leptophloeos and twelve species were associated with M. tenuiflora. There was a predominance of the fungal genus Acaulospora, with seven species, followed by Gigaspora and Glomus. The species studied and the seasons differ in the composition and structure of the AMF community in the rhizosphere of the plants. The ecological significance of those differences needs to be examined further.  相似文献   

15.
Sugarcane fields in 14 different study sites were analyzed for the presence of different arbuscular mycorrhizal fungal (AMF) spores. A total of 23 AMF species representing four genera were identified, among which Glomus fasciculatum and G. mosseae were the dominant species. The mean spore density in the root-zone soils of sugarcane plants varied from 119 to 583 per 100 g of soil, and the mean percentage root colonization varied from 60 to 89 %. A study of the effect of edaphic factors on AM spore density and percentage root colonization revealed a positive correlation between pH and AMF spore density and root colonization and a negative correlation between electrical conductivity, nitrogen, and phosphorus. A positive correlation was observed between AMF spore density and root colonization. Season was also found to play a vital role in determining AMF spore density and percentage root colonization, with high spore density and root colonization observed during the summer season and lower spore densities and root colonization during the winter season.  相似文献   

16.
We studied long-term effects of fertilization with wood ash on biomass, vitality and mycorrhizal colonization of fine roots in three conifer forest stands growing in Vacciniosa turf. mel. (V), Myrtillosa turf. mel. (M) and Myrtillosa turf. mel./Caricoso-phragmitosa (MC) forest types on peat soils. Fertilization trials amounting 5 kg/m2 of wood ash were established 12 years prior to this study. A total of 63 soil samples with roots were collected and analysed. Ectomycorrhizal (ECM) fungi in roots were identified by morphotyping and sequencing of the fungal internal transcribed spacer (ITS) region. In all forest types, fine root biomass was higher in fertilized plots than in control plots. In M forest type, proportion of living fine roots was greater in fertilized plots than in control plots, while in V and MC, the result was opposite. Fifty ECM species were identified, of which eight were common to both fertilized and control plots. Species richness and Shannon diversity index were generally higher in fertilized plots than in control plots. The most common species in fertilized plots were Amphinema byssoides (17.8 %) and Tuber cf. anniae (12.2 %), while in control plots, it was Tylospora asterophora (18.5 %) and Lactarius tabidus (20.3 %). Our results showed that forest fertilization with wood ash has long-lasting effect on diversity and composition of ECM fungal communities.  相似文献   

17.
This is the first report of a comprehensive ecological investigation of AMF symbiosis in banana over a very broad zone of its commercial cultivation, South India. The AMF characteristics in relation to specific banana varieties, soils and seasons are carried out. This baseline data has global use for mycorrhizal applications in the crop. Spore density and percentage root colonization in relation to soil fertility parameters, seasons and soil series, along with other ecological parameters are assessed as per standard methods. Altogether 14 different AMF species of 13 different banana varieties, in terms of spore density and percentage colonization from 47 different soil series of South India are discovered. Among the 14 AMF species observed, Dentiscutata nigra is a new report in banana. Shannon’s diversity index and Simpson’s index over seasons are measured. Evenness in AM fungal population in banana fields in the monsoon was higher than that of summer. Presence of over 30% AMF root colonization in majority of banana varieties revealed its significance in the crop.  相似文献   

18.
A comparative proteomic approach was performed to analyze the differential accumulation of leaf proteins in response to the symbiosis between Solanum lycopersicum and the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis. Protein profiling was examined in leaves from tomato plants colonized with AMF (M), as well as non-colonized plants fertilized with low phosphate (20 μM P; NM-LP) and non-colonized plants fertilized with regular phosphate Hoagland’s solution (200 μM P; NM-RP). Comparisons were made between these groups, and 2D-SDS-PAGE revealed that 27 spots were differentially accumulated in M vs. NM-LP. Twenty-three out of the 27 spots were successfully identified by mass spectrometry. Two of these proteins, 2-methylene-furan-3-one reductase and auxin-binding protein ABP19a, were up-accumulated in M plants. The down-accumulated proteins in M plants were associated mainly with photosynthesis, redox, and other molecular functions. Superoxide dismutase, harpin binding protein, and thioredoxin peroxidase were down-accumulated in leaves of M tomato plants when compared to NM-LP and NM-RP, indicating that these proteins are responsive to AMF colonization independently of the phosphate regime under which they were grown. 14-3-3 protein was up-accumulated in NM-RP vs. NM-LP plants, whereas it was down-accumulated in M vs. NM-LP and M vs. NM-RP, regardless of their phosphate nutrition. This suggests a possible regulation by P nutrition and AMF colonization. Our results demonstrate AMF-induced systemic changes in the expression of tomato leaf proteins, including the down-accumulation of proteins related to photosynthesis and redox function.  相似文献   

19.
Invasive plants have wide-ranging impacts on native systems including reducing native plant richness and altering soil chemistry, microbes, and nutrient cycling. Increasingly, these effects are found to linger long after removal of the invader. We examined how soil chemistry, bacterial communities, and litter decomposition varied with cover of Euonymus fortunei, an invasive evergreen liana, in two central Kentucky deciduous forests. In one forest, E. fortunei invaded in the late 1990s but invasion remained patchy and we paired invaded and uninvaded plots to examine the associations between E. fortunei cover and our response variables. In the second forest, E. fortunei had completely invaded the forest by 2005; areas where it had been selectively removed by 2010 were paired with an adjacent invaded plot. Where E. fortunei had patchily invaded, E. fortunei patches had up to 3.5× nitrogen, 2.7× carbon, and 1.9× more labile glomalin in soils than uninvaded plots, whereas there were no differences in soil characteristics between invaded and removal plots. In the patchily invaded forest, bacterial community composition varied among invaded and non-invaded plots, whereas bacterial communities did not vary among invaded and removal plots. Finally, E. fortunei leaf litter decomposed faster (k = 4.91 year?1) than the native liana (k = 3.77 year?1), Vitis vulpina; decomposition of both E. fortunei and V. vulpina was faster in invaded (k = 7.10 year?1) than removal plots (k = 4.77 year?1). Our findings suggest that E. fortunei invasion increases the rate of leaf litter decomposition via high-quality litter, alters the decomposition environment, and shifts in the soil biotic communities associated with a dense mat of wintercreeper. Land managers with limited resources should target the densest mats for the greatest restoration potential and remove wintercreeper patches before they establish dense mats.  相似文献   

20.
It has been acknowledged that land-use change has negative effects on genetic diversity and sex ratio in dioecious species, but less attention has been paid on the influence that land-use change has on the biotic interactions, especially between dioecious species and arbuscular mycorrhizal (AM) fungi. AM mutualism involves reciprocal transfer of carbohydrates and mineral nutrients between the host plant’s roots and these fungi. Here, we report spatial and temporal variation in AM colonization in dioecious wild Carica papaya plants growing in sites with different land use intensity. We tagged, recorded the basal stem circumference and collected roots of reproductive female and male Carica papaya plants in three wild sites during dry and rainy seasons of western Mexico. We also collected soil samples in each site to conduct soil chemical analyses. The sexes of C. papaya did not show significant differences in the frequency (percentage of root colonized by intraradical fungal structures) and abundance (length of intraradical hyphae) of AM fungi but the higher AM colonization was observed during the dry season, and in the site with the lowest disturbance. There was no relationship between soil chemistry and AM colonization. Overall, our findings suggest that land-use intensity has a negative effect on AM colonization and we discuss the consequences of habitat loss for the reproductive female and male plants, the implications of decreasing AM colonization for wild Carica papaya plants an important species that provides a source of genetic variation for the C. papaya varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号