首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spliceosomal cyclophilin H is a specific component of the human U4/U6 small nuclear ribonucleoprotein particle, interacting with homologous sequences in the proteins U4/U6-60K and hPrp18 during pre-mRNA splicing. We determined the crystal structure of the complex comprising cyclophilin H and the cognate domain of U4/U6-60K. The 31 amino acid fragment of U4/U6-60K is bound to a region remote from the cyclophilin active site. Residues Ile118-Phe121 of U4/U6-60K expand the central beta-sheet of cyclophilin H and the side-chain of Phe121 inserts into a hydrophobic cavity. Concomitantly, in the crystal the cyclophilin H active site is occupied by the N terminus of a neighboring cyclophilin H molecule in a substrate-like manner, indicating the capacity of joint binding to a substrate and to U4/U6-60K. Free and complexed cyclophilin H have virtually identical conformations suggesting that the U4/U6-60K binding site is pre-shaped and the peptidyl-prolyl-cis/trans isomerase activity is unaffected by complex formation. The complex defines a novel protein-protein interaction mode for a cyclophilin, allowing cyclophilin H to mediate interactions between different proteins inside the spliceosome or to initiate from its binding platforms isomerization or chaperoning activities.  相似文献   

2.
Cyclosporin A (CsA), a potent immunosuppressant, is known to bind with high specificity to cyclophilin (CyP), a 17.7 kDa protein with peptidyl-prolyl isomerase activity. In order to investigate the three-dimensional structure of the CsA/CyP complex, we have applied a variety of multidimensional NMR methods in the study of uniformly 13C-labeled CsA bound to cyclophilin. The 1H and 13C NMR signals of cyclosporin A in the bound state have been assigned, and from a quantitative interpretation of the 3D NOE data, the bound conformation of CsA has been determined. Three-dimensional structures of CsA calculated from the NOE data by using a distance geometry/simulated appealing protocol were found to be very different from previously determined crystalline and solution conformations of uncomplexed CsA. In addition, from CsA/CyP NOEs, the portions of CsA that interact with cyclophilin were identified. For the most part, those CsA residues with NOEs to cyclophilin were the same residues important for cyclophilin binding and immunosuppressive activity as determined from structure/activity relationships. The structural information derived in this study together with the known structure/activity relationships for CsA analogues may prove useful in the design of improved immunosuppressants. Moreover, the approach that is described for obtaining the structural information is widely applicable to the study of small molecule/large molecule interactions.  相似文献   

3.
The previously determined 3D NMR solution structure of cyclophilin-bound cyclosporin A (CsA) was docked onto the X-ray crystal structure of cyclophilin. Intermolecular nuclear Overhauser effects (NOE) between CsA and cyclophilin were used as constraints in a restrained energy minimization to generate a model of the complex which satisfied all the NOE distance constraints. The model shows that the residues 9 to 11 and 1 to 5 of the cyclic CsA molecule are in contact with cyclophilin. Comparing the model of the CsA—cyclophilin complex to the X-ray crystal structure of a complex of cyclophilin with a substrate for peptidyl-proline cis-trans isomerase activity, i.e. the linear tetrapeptide substrate ae-Ala-Ala-Pro-Ala-amc (ac. acetyl; amc. amidomethylcoumarin), one notices that the contacting peptide segments in the two ligands are oriented in opposite directions, and that the side chain or MeVal-11 of CsA superposes rather precisely with the position of the prolyl residue in ae-Ala-Ala-Pro-Ala-amc.  相似文献   

4.
In order to exploit cyclophilin as a potential target for neurological drug design, we demonstrate in this presentation that several nonimmunosuppressant analogues of cyclosporin A, modified at the various positions in the 'effector' domain, are equipotent nerve growth agents compared to cyclosporin A. Our results suggest that neurotrophic activity of cyclosporin A and its derivatives resides in the binding domain, and binding to cyclophilin and/or inhibiting rotamase activity may be a necessity for neurotrophic effects of cyclophilin ligands.  相似文献   

5.
Cyclophilins are a family of cyclosporin-A-binding proteins which catalyse rotation about prolyl peptide bonds. A mitochondrial isoform in mammalian cells, cyclophilin D, is a component of the permeability transition pore that is formed by the adenine nucleotide translocase and the voltage-dependent anion channel at contact sites between the inner and outer membrane. This study investigated the submitochondrial location of cyclophilin D by following the fate of radiolabelled protein following import. Precursor [(35)S]cyclophilin D was expressed in vitro from a PCR-generated cDNA. The precursor was imported by rat heart mitochondria and processed in a single step to a 21-kDa protein that was identical (SDS/PAGE) to an in vitro expressed mature protein and a cyclophilin D purified from rat heart mitochondria. No further modification of the mature protein could be demonstrated. Fractionation of mitochondria following import established that cyclophilin D locates only to the matrix. It is concluded that cyclophilin D binding to the permeability transition pore must occur at the inner face of the mitochondrial inner membrane.  相似文献   

6.
The human cyclophilin gene was isolated from a genomic library derived from leucocyte DNA and sequenced. The gene contains five exons and four introns. The amino acid sequence deduced from the exons matches perfectly the one previously determined from the T-cell cyclophilin cDNA. A TATA box is visible in the promoter region and putative Sp1 binding sites are also found there as well as in the first intron. Six members of the middle repetitive Alu gene family are present in one or other orientation in the non-coding regions of the cyclophilin gene. Hybridisation of genomic DNA to probes derived from the promoter region or the first intron indicates that the cyclophilin gene is present as a single copy in the human haploid genome. Seven other cyclophilin-related DNA clones isolated from the same library were also characterized. They show a high degree of similarity to the cyclophilin cDNA and are colinear to it. However, multiple genetic lesions, often including deletion and/or insertion events which modify the reading frame, are found in these clones which are therefore likely to represent processed pseudogenes.  相似文献   

7.
Cyclophilins (E.C. 5.1.2.8) are protein chaperones with peptidyl-prolyl cis/trans isomerase activity (PPIase). In the present study, we demonstrate a physical interaction among AvppiB, encoding the cytoplasmic cyclophilin from the soil nitrogen-fixing bacterium Azotobacter vinelandii, and AvaccC, encoding the biotin carboxylase subunit of acetyl-CoA carboxylase, which catalyzes the committed step in long-chain fatty acid synthesis. A decrease in AvppiB PPIase activity, in the presence of AvaccC, further confirms the interaction. However, PPIase activity seems not to be essential for these interactions since a PPIase active site mutant of cyclophilin does not abolish the AvaccC binding. We further show that the presence of cyclophilin largely influences the measured ATP hydrolyzing activity of AvaccA in a way that is negatively regulated by the PPIase activity. Taken together, our data support a novel role for cyclophilin in regulating biotin carboxylase activity.  相似文献   

8.
The permeability transition pore is involved in the mitochondrial pathway of apoptosis. Cyclophilin D, a pore component, has catalytic activity as a peptidyl prolyl cis, trans-isomerase (PPIase), which is essential to the pore opening. It has been reported that cyclophilin D overexpression suppresses apoptosis in cancer cells. To clarify the mechanism of this effect, we generated glioma cells overexpressing wild-type or a PPIase-deficient mutant of cyclophilin D. Interestingly, we found that the PPIase-dependent apoptosis suppression by cyclophilin D correlated with the amounts of mitochondrial-bound hexokinase II, which has anti-apoptotic activity. Inactivation of endogenous cyclophilin D by small interference RNA or a cyclophilin inhibitor was found to release hexokinase II from mitochondria and to enhance Bax-mediated apoptosis. The anti-apoptotic effects of cyclophilin D were canceled out by the detachment of hexokinase II from mitochondria, demonstrating that mitochondrial binding of hexokinase II is essential to the apoptosis suppression by cyclophilin D. Furthermore, cyclophilin D dysfunction appears to abrogate hexokinase II-mediated apoptosis suppression, indicating that cyclophilin D is required for the anti-apoptotic activity of hexokinase II. Based on the above, we propose here that cyclophilin D suppresses apoptotic cell death via a mitochondrial hexokinase II-dependent mechanism in cancer cells.  相似文献   

9.
Cyclophilin B is a cyclosporin A-binding protein exhibiting peptidyl-prolyl cis/trans isomerase activity. We have previously shown that it interacts with two types of binding sites on T lymphocytes. The type I sites correspond to specific functional receptors and the type II sites to sulfated glycosaminoglycans. The interactions of cyclophilin B with type I and type II sites are reduced in the presence of cyclosporin A and of a synthetic peptide mimicking the N-terminal part of cyclophilin B, respectively, suggesting that the protein possesses two distinct binding regions. In this study, we intended to characterize the areas of cyclophilin B involved in the interactions with binding sites present on Jurkat cells. The use of cyclophilin B mutants modified in the N-terminal region demonstrated that the 3Lys-Lys-Lys5 and 14Tyr-Phe-Asp16 clusters are probably solely required for the interactions with the type II sites. We further engineered mutants of the conserved central core of cyclophilin B, which bears the catalytic and the cyclosporin A binding sites as an approach to localize the binding regions for the type I sites. The enzymatic activity of cyclophilin B was dramatically reduced after substitution of the Arg62 and Phe67 residues, whereas the cyclosporin A binding activity was destroyed by mutation of the Trp128 residue and strongly decreased after modification of the Phe67 residue. Only the substitution of the Trp128 residue reduced the binding of the resulting cyclophilin B mutant to type I binding sites. The catalytic site of cyclophilin B therefore did not seem to be essential for cellular binding and the cyclosporin A binding site appeared to be partially involved in the binding to type I sites.  相似文献   

10.
Presynaptic actin was identified as a new Torpedo cyclophilin B partner captured in pull-down experiments and by coimmunoprecipitation. The cyclophilin B–actin pull-down interaction was insensitive to the blockade of peptidyl cis/trans prolyl isomerase and calcineurin activities and to the latrunculin A- and jasplakinolide-mediated perturbation of F-actin polymerization. Conversely, it was reduced by ATP and stimulated by a low Cu2+ treatment of synaptosomes and by acrolydan-conjugated cyclophilin B. This Cu2+-induced stress, in parallel, stimulates the formation of GSH adducts with cysteines of synaptosomal actin followed by its deglutathionylation and its dimerization in the presence of higher Cu2+ concentrations. The reversibility of the thiol processing of actin occurred in the same range of Cu2+ concentrations that mediated a stronger cyclophilin B–actin interaction, suggesting cyclophilin B participation in antioxidant processes. Among 2-Cys-peroxiredoxin isoforms, mainly peroxiredoxin-1 was found in cell bodies and nerve endings. Functionally, both Torpedo and human peroxiredoxin-1 were activated in vitro by Torpedo cyclophilin B. Moreover, cyclophilin B, like thioredoxins, maintained an H2O2-dependent peroxidase activity of peroxiredoxin-1 in the presence of dithiothreitol. Thus, the monocysteinic Torpedo cyclophilin B is able to sustain peroxiredoxin-1 activity and might be involved in the presynaptic defense against oxidative stress affecting G-actin posttranslational changes and its redox signaling in nerve ending compartments.  相似文献   

11.
The CD147 receptor plays an integral role in numerous diseases by stimulating the expression of several protein families and serving as the receptor for extracellular cyclophilins; however, neither CD147 nor its interactions with its cyclophilin ligands have been well characterized in solution. CD147 is a unique protein in that it can function both at the cell membrane and after being released from cells where it continues to retain activity. Thus, the CD147 receptor functions through at least two mechanisms that include both cyclophilin-independent and cyclophilin-dependent modes of action. In regard to CD147 cyclophilin-independent activity, CD147 homophilic interactions are thought to underlie its activity. In regard to CD147 cyclophilin-dependent activity, cyclophilin/CD147 interactions may represent a novel means of signaling since cyclophilins are also peptidyl-prolyl isomerases. However, direct evidence of catalysis has not been shown within the cyclophilin/CD147 complex. In this report, we have characterized the solution behavior of the two most prevalent CD147 extracellular isoforms through biochemical methods that include gel-filtration and native gel analysis as well as directly through multiple NMR methods. All methods indicate that the extracellular immunoglobulin-like domains are monomeric in solution and, thus, suggest that CD147 homophilic interactions in vivo are mediated through other partners. Additionally, using multiple NMR techniques, we have identified and characterized the cyclophilin target site on CD147 and have shown for the first time that CD147 is also a substrate of its primary cyclophilin enzyme ligand, cyclophilin A.  相似文献   

12.
The backbone 1H, 13C and 15N chemical shifts of cyclophilin (CyP) when bound to cyclosporin A (CsA) have been assigned from heteronuclear two- and three-dimensional NMR experiments involving selectively 15N- and uniformly 15N- and 15N,13C-labeled cyclophilin. From an analysis of the 1H and 15N chemical shifts of CyP that change upon binding to CsA and from CyP/CsA NOEs, we have determined the regions of cyclophilin involved in binding to CsA.  相似文献   

13.
Endometrial carcinoma is one of the most common malignancies of the female genital tract, and there is an urgent need for discovery of novel factors for prognostic assessment and therapeutic targets to endometrial carcinoma. Herein a two-dimensional gel electrophoresis and MALDI-Q-TOF MS/MS-based proteomics approach was used to identify differentially expressed proteins in endometrial carcinoma. Of the 99 proteins identified, cyclophilin A was one of the most significantly altered proteins, and its overexpression was confirmed using RT-PCR and Western blot analyses. Immunohistochemistry suggested a link between cyclophilin A expression and poor differentiation and decreased survival (p < 0.01). Knockdown of cyclophilin A expression by RNA interference led to the significant suppression of the cell growth and the induction of apoptosis in endometrial carcinoma HEC-1-B cells in vitro (p < 0.01) and the inhibition of tumor growth in vivo (p < 0.01). These data suggest that cyclophilin A may serve as a novel prognostic factor and possibly an attractive therapeutic target for endometrial carcinoma.  相似文献   

14.
Cyclophilins are a family of proteins that share a common, highly conserved sequence motif. Cyclophilins bind transiently to other proteins and facilitate their folding. One member of the family, hCypH, is part of the human spliceosomal [U4/U6·U5] tri-snRNP complex; it associates specifically and stably with the U4/U6-specific protein 60K. Here, we demonstrate that recombinant hCypH exhibits peptidyl–prolyl isomerase (PPIase) activity, and describe mutagenesis studies demonstrating that it shares the catalytic pocket with other members of the cyclophilin family. However, neither the PPIase activity nor the catalytic pocket is required for binding of protein 60K. Rather, hCypH contains a small insertion in a loop of the otherwise conserved cyclophilin backbone, and this minor change creates a highly specific binding site that is responsible for the association of this cyclophilin, but not others, with protein 60K. hCypH is thus the first small cyclophilin shown to have a second protein–protein interaction site and the ability to bind stably to another protein. Since the catalytic pocket and the second binding site are located on opposite sides of the cyclophilin structure, this opens up the interesting possibility that hCypH may serve as a bridge mediating interactions between protein 60K of the U4/U6 snRNP and other as yet unknown factors.  相似文献   

15.
Oral lichen planus (OLP) is considered a precancerous lesion with no known cure. Recent studies reported that abnormal regulation of apoptosis was involved in the pathogenesis of OLP. Next generation sequencing was used to screen the candidate microRNAs and genes in biopsies from patients with OLP and healthy mucosa. Human oral keratinocytes were transfected into the related oligonucleotides of miR‐27b‐3p/cyclophilin D and their control groups. Apoptosis was detected by TdT‐mediated dUTP nick end labelling and flow cytometry. The levels of mRNA and protein were detected by quantitative PCR, Western blots, and enzyme‐linked immunosorbent assays, respectively. Luciferase assays were performed to detect the luciferase activities of miR‐27b‐3p and cyclophilin D. Here, we showed that basal epithelium apoptosis was reduced and the miR‐27b‐3p levels were decreased in clinical OLP samples. We also found that down‐regulation of miR‐27b‐3p inhibited epithelial keratinocyte apoptosis by up‐regulating cyclophilin D expression. Moreover, cyclophilin D increased the protein stability of Bcl2 through direct binding, and Bcl2 suppressed caspase9/3 activation and cytochrome C release. Taken together, these data showed that miR‐27b‐3p regulated keratinocyte apoptosis through cyclophilin D/Bcl2 signalling, suggesting the miR‐27b‐3p regulated the pathogenesis of OLP.  相似文献   

16.

Background

Hepatitis C Virus (HCV) infection is a leading indication for liver transplantation. HCV infection reoccurs almost universally post transplant, decreasing both graft longevity and patient survival. The immunosuppressant, cyclosporine A (CsA) has potent anti-HCV activity towards both HCV replicons and the genotype 2a cell culture infectious virus. Previously, we isolated mutations in the 1bN replicon with less sensitivity to CsA that mapped to both NS5A and NS5B regions of the virus. Mutations in NS5A alone conferred decreased CsA susceptibility regardless of NS5B mutations.

Methodology/Principal Findings

We examined the mechanisms by which NS5A mutations contribute to CsA resistance and if they are strain dependent. Using in vitro mutagenesis, the amino acid position 321 mutation of NS5A was restored to the wild-type tyrosine residue conferring partial CsA susceptibility on the mutant replicon. The 321 mutation also alters CsA susceptibility of the JFH cell culture virus. Additionally, we demonstrated a novel CsA-sensitive interaction between NS5A and both cyclophilin A and B. Both the mutant NS5A and wild type NS5A bind cyclophilin in vitro. The NS5A: cyclophilin interaction requires both the NS5A region identified by the resistance mutants and cyclophilin catalytic residues. In cell culture, NS5A from CsA resistant mutant has an enhanced interaction with cyclophilin B. Additionally; NS5B facilitates a stronger binding of mutant NS5A to endogenous cyclophilin B than wild-type in cell culture.

Conclusions/Significance

Collectively, this data suggests direct interactions between cyclophilins and NS5A are critical to understand for optimal use of cyclophilin inhibitors in anti-HCV therapy.  相似文献   

17.
18.
To investigate properties of yellow lupine cytosolic cyclophilin, an expression vector pET15CYP was constructed. The CyP cDNA (GenBank accession no.Y16088) reveals an open reading frame of 172 amino acids with the conserved tryptophan residue at position 128 and an insertion of seven amino acids spanning positions 48-54. Yellow lupine cyclophilin, purified after expression in E. coli cells, exhibits peptidyl-prolyl cis/trans isomerase activity when assayed with a synthetic oligopeptide. We have demonstrated that the recombinant cyclophilin is able to interact with nucleic acids, both single and double stranded DNA fragments as well as RNA.  相似文献   

19.
To investigate the relationship between the immune system and convulsions in an animal model, we examined the effects of repeated administration with the immunosuppressant cyclosporin A on pentylenetetrazol (PTZ)-induced convulsions and the changes in the mRNA expression of its binding protein cyclophilin in the rat brain. The consecutive administration of cyclosporin A (5 mg/kg s.c., 14 days) significantly aggravated the severity of convulsions induced with PTZ 75 mg/kg i.p. Furthermore, it down-regulated the levels of cyclophilin mRNA in several brain regions and inhibited the PTZ-induced increase of hippocampal cyclophilin mRNA. Compared with the group without PTZ pretreatment or the group treated with chronic vehicle administration after the PTZ-preinjection, chronic cyclosporin A administration after the initial injection of PTZ apparently aggravated convulsions after the second PTZ injection. Interestingly, the increase in hippocampal cyclophilin mRNA observed after a single PTZ injection was not found after the second PTZ injection in the group with PTZ pretreatment. Therefore, these findings suggest that cyclosporin A administered peripherally can affect the central nervous system, and that an immune response associated with the first convulsive episode plays a key role in severity during subsequent attacks.  相似文献   

20.
The bacterial chaperonin GroEL/GroES assists folding of a broad spectrum of denatured and misfolded proteins. Here, we explore the limits of this remarkable promiscuity by mapping two denatured proteins with very different conformational properties, rhodanese and cyclophilin A, during binding and encapsulation by GroEL/GroES with single-molecule spectroscopy, microfluidic mixing, and ensemble kinetics. We find that both proteins bind to GroEL with high affinity in a reaction involving substantial conformational adaptation. However, whereas the compact denatured state of rhodanese is encapsulated efficiently upon addition of GroES and ATP, the more expanded and unstructured denatured cyclophilin A is not encapsulated but is expelled into solution. The origin of this surprising disparity is the weaker interactions of cyclophilin A with a transiently formed GroEL-GroES complex, which may serve as a crucial checkpoint for substrate discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号