首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male NMRI mice were fed a diet containing a complete mixture of amino acids or a mixture deficient in methionine-cysteine or lysine (30% of the control level) for a period of 6 days. During the feeding period all mice received dimethylnitrosamine in the drinking water ad libitum. The exposure averaged 1 mg dimethylnitrosamine/kg body weight and day. The concentration of O6-methylguanine-DNA methyltransferase was measured in liver extracts. It decreased significantly in the methionine-cysteine deficient mice. When DNA from the liver was analyzed for alkylated purine bases the mice received a single dose of 14C-labeled dimethylnitrosamine (0.5 or 1 mg/kg body weight) at 120 min before sacrifice. The concentration of O6-methylguanine increased significantly over the control level upon feeding the deficient diets and was restored to the concentration of the controls by refeeding lysine for 2 days following 6 days of lysine deficiency. The increased ratio of O6-methylguanine to N-7-methylguanine indicated that methylation of guanine in the N-7 position was not subject to variation by the intake of dimethylnitrosamine during the dietary deficiencies. The results demonstrate the requirement for a balanced composition of amino acids in the diet to maintain a sufficient concentration of O6-methylguanine-DNA methyltransferase in the cells and thus to permit efficient removal of the methyl group from the O-6 position of guanine in DNA after exposure to dimethylnitrosamine.  相似文献   

2.
O6-Methylguanine is a lesion produced in DNA after exposure of animals to the procarcinogen dimethylnitrosamine. The lesion may lead to mutagenesis or carcinogenesis if not repaired. Repair is accomplished by the protein O6-methylguanine-DNA methyltransferase (MT). The methyl group is transferred to a cysteine residue of the protein, which is not regenerated. In mice, after exposure to alkylating agents, the synthesis of the protein is non-inducible. The inactivation of MT as a result of the transmethylation makes new synthesis of the protein molecules necessary for further dealkylation reactions. Protein synthesis activity correlates well with dietary protein quality. Nutritional conditions of amino acid restriction will limit the number of MT molecules synthesized. Continuous exposure of mice to dimethylnitrosamine will further diminish the pool of the protein. In this study, mice were fed a diet low in lysine and simultaneously given dimethylnitrosamine in the drinking water at concentrations resulting in dosages of zero, 0.4 mg or 1.2 mg/kg body weight/day. After 6 days MT was assayed in liver, kidney and lung. In liver and kidney, lysine restriction provoked a decrease in MT levels per mg of tissue DNA which was intensified by the presence of dimethylnitrosamine in the drinking water. Recovery from lysine restriction with respect to MT levels was achieved within 2 days. In lung, moderate effects on MT levels were observed when dietary lysine restriction was combined with the highest dosage of dimethylnitrosamine used (1.2 mg/kg body weight/day). The data strongly emphasize the importance of an adequate amino acid mixture in the diet, to support protein synthesis and to allow for high MT levels and repair of DNA lesions at the O-6 position of guanine during the exposure of the animals to alkylating agents.  相似文献   

3.
O6-methylguanine-DNA methyltransferase removes methyl groups from the O-6 position of guanine in DNA previously alkylated by alkylating carcinogens. Thus, the protein facilitates restoration of the impaired DNA. The content of O6-methylguanine-DNA methyltransferase was assayed in circulating lymphocytes and the impact of surgical trauma investigated. Patients (n = 13) without metabolic diseases admitted for elective orthopedic surgery were used. The patients were allowed water and food postoperatively. Blood was taken before and 3 days following surgery and the circulating lymphocytes were isolated. Before surgery, the O6-methylguanine-DNA methyltransferase content determined in the cell extracts showed patient-specific variations. Following surgery, a significant decrease of the protein by 60% (from 609 to 243 fmole/mg of DNA) was observed. The intensity of surgical trauma was confirmed by the decrease in plasma albumin concentration and the increase in white blood cell counts. The surgical trauma might elicit its effect as either a change in turnover of O6-methylguanine-DNA methyltransferase or a release from the thymus of lymphocytes low in enzyme levels. In summary, the surgical trauma per se was the cause of the pronounced decrease in the O6-methylguanine-DNA methyltransferase seen here. Investigations on O6-methylguanine-DNA methyltransferase levels have an important relevance in studies on tumor-promoting agents inhaled and then taken up by the T lymphocytes of prospective proliferating capacity.  相似文献   

4.
cDNA for O6-methylguanine-DNA methyltransferase was isolated by screening rat liver cDNA libraries, using as a probe the human cDNA sequence for methyltransferase. The rat cDNA encodes a protein with 209 amino acid residues. The predicted amino acid sequence of the rat methyltransferase exhibits considerable homology with those of the human, yeast and bacterial enzymes, especially around putative methyl acceptor sites. When the cDNA was placed under control of the lac promoter and expressed in methyltransferase-deficient Escherichia coli (ada-, ogt-) cells, a characteristic methyltransferase protein was produced. The rat DNA methyltransferase thus expressed could complement the biological defects of the E. coli cell caused by lack of its own DNA methyltransferases; e.g. increased sensitivity to alkylating agents in terms of both cell death and mutation induction.  相似文献   

5.
A cell line with an increased resistance to alkylating agents and an extremely high level of O6-methylguanine-DNA methyltransferase activity was isolated after transfection of methyltransferase-deficient Mer- cells with a cDNA library, prepared from methyltransferase-proficient human Mer+ (Raji) cells. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis revealed that a protein, with a molecular weight of approximately 25,000, accepted 3H label from DNA that had been treated with [3H]methylnitrosourea. Since the cDNA for methyltransferase was integrated into the chromosomal DNA, it was recovered by using the polymerase chain reaction. When the cDNA placed in an expression vector p500 was introduced into Mer- cells, the cells acquired an increased resistance to alkylating agents and exhibited a high level of O6-methylguanine-DNA methyltransferase activity. From the transformants the cDNA could be recovered as a part of the autonomously replicating plasmid. The nucleotide sequence of the cDNA was determined, and an open reading frame comprising 207 amino acid residues was found. The molecular weight of methyltransferase, calculated from the predicted amino acid sequence, was 21,700. The predicted amino acid sequence of the human methyltransferase exhibits an intensive homology with those of the bacterial counterparts, Ada and Ogt proteins of Escherichia coli and Dat protein of Bacillus subtilis, especially around possible methyl acceptor sites.  相似文献   

6.
DNA fragments of Bacillus subtilis were inserted into a plasmid vector that can multiply in Escherichia coli cells, and foreign genes were expressed under the control of the lac promoter. By selecting hybrid plasmids that confer an increased resistance to alkylating agents on E. coli ada- mutant cells, the B. subtilis gene dat, which encodes O6-methylguanine-DNA methyltransferase, was cloned. The Dat protein, with a molecular weight of about 20,000, could transfer the methyl group from methylated DNA to its own protein molecule. Based on the nucleotide sequence of the gene, it was deduced that the protein comprises 165 amino acids and that the molecular weight is 18,779. The presumptive amino acid sequence of Dat protein is homologous to the sequences of the E. coli Ogt protein and the C-terminal half of the Ada protein, both of which carry O6-methylguanine-DNA methyltransferase activity. The pentaamino acid sequence Pro-Cys-His-Arg-Val, the cysteine residue of which is the methyl acceptor site in Ada protein, was conserved in the 3 methyltransferase proteins. The structural similarity of these methyltransferases suggests possible evolution from a single ancestral gene.  相似文献   

7.
The DNA repair enzyme O6-methylguanine-DNA methyltransferase has been used as a reagent to analyse the initial reaction sites of alkylating agents such as chloroethylnitrosourea that cross-link DNA. The transferase can be employed for this purpose because it removes substituted ethyl groups from DNA, as shown by its ability to act on O6-hydroxyethylguanine residues in DNA. The enzyme counteracts the formation of interstrand cross-links induced by bis-chloroethylnitrosourea, but not those induced by nitrogen mustard. Once formed, chloroethylnitrosourea-induced cross-links are not broken by the enzyme. In agreement with deductions from experiments with living cells, it is concluded that chloroethylnitrosourea act by forming reactive monoadducts at the O6 position of guanine and/or the O4 position of thymine, which subsequently generate -CH2CH2- bridges to the complementary DNA strand. A new method for quantitating interstrand cross-links in DNA has been employed.  相似文献   

8.
O6-Methylguanine-DNA methyltransferase, a ubiquitous and unusual DNA repair protein, eliminates mutagenic and cytotoxic O6-alkylguanine from DNA by transferring the alkyl group to one of its cysteine residues in a second-order suicide reaction. This 22-kDa protein was immunoaffinity-purified to homogeneity from cultured human lymphoblasts (CEM-CCRF line) and compared with the O6-methylguanine-DNA methyltransferase purified to homogeneity from Escherichia coli expressing a cloned human cDNA. The cellular and recombinant proteins were identical in size, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of intact molecules and their peptides. Immunoprobing of Western blots with three monoclonal antibodies specific for human cellular O6-methylguanine-DNA methyltransferase further indicated identity of the two proteins. The amino acid sequence of the cellular protein was experimentally determined for 87 out of a total of 207 residues and was found to be identical to that deduced from the cDNA sequence. A unique cysteine residue at position 145 was identified as the methyl acceptor site by autoradiographic analysis of peptides and sequence analysis of 3H-methylated O6-methylguanine-DNA methyltransferase. These observations establish that the cloned O6-methylguanine-DNA methyltransferase cDNA encodes the full-length O6-methylguanine-DNA methyltransferase polypeptide that is normally present in human cells. Moreover, the cellular protein does not appear to be significantly modified by posttranslational processes.  相似文献   

9.
Repair of alkylated DNA: recent advances   总被引:9,自引:0,他引:9  
  相似文献   

10.
The O6-methylguanine-DNA methyltransferase of Escherichia coli acts rapidly and stoichiometrically to convert a mutagenic O6-methylguanine residue in DNA to unsubstituted guanine. Even at low protein concentrations and in the absence of any cofactors, the transfer of a methyl group to one of the protein's own cysteine residues occurs in less than 2 s at 37 degrees C. The entire kinetic process can be followed experimentally at 5 degrees C. Formation of S-methylcysteine in the protein is accompanied by loss of activity and accounts for the exceptional suicide kinetics of this enzyme as well as for the sharp saturation of O6-methylguanine repair observed in vivo. The enzyme can remove greater than 98% of the methyl groups from O6-methylguanine present in alkylated DNA, but leaves N-alkylated purines untouched. Single-stranded DNA containing O6-methylguanine is a poor substrate, with the methyl transfer occurring at approximately 0.1% of the rate for duplex DNA. This latter observation may explain the high frequency of mutations induced by alkylating agents at DNA replication forks.  相似文献   

11.
Epigenetic silencing of the MGMT gene in cancer.   总被引:8,自引:0,他引:8  
Silencing of the O6-methylguanine-DNA methyltransferase (MGMT) gene, a key to DNA repair, plays a critical role in the development of cancer. The gene product, functioning normally, removes a methyl group from mutagenic O6-methylguanine, which is produced by alkylating agents and can make a mismatched pair with thymine, leading to transition mutation through DNA replication. MGMT is epigenetically silenced in various human tumors. It is well known that DNA hypermethylation at the promoter CpG island plays a pivotal role in the epigenetic silencing of tumor suppressor genes. MGMT silencing, however, occurs without DNA hypermethylation in some cancer cells. Dimethylation of histone H3 lysine 9 and binding of methyl-CpG binding proteins are common and essential in MGMT-silenced cells. Silencing of MGMT has been shown to be a poor prognostic factor but a good predictive marker for chemotherapy when alkylating agents are used. In this review, we describe recent advances in understanding the silencing of MGMT and its role in carcinogenesis; epigenetic mechanisms; and clinical implications.  相似文献   

12.
The role of nucleotide excision repair in the mutagenicity of the monofunctional alkylating agents N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methyl methanesulfonate (MMS), N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), and N-ethyl-N-nitrosourea (ENU) in Salmonella typhimurium was examined. The mutagenic potential of the mutagenic agents used increased in the following order: MMS less than ENU less than ENNG less than MNNG. The results obtained confirm the involvement of nucleotide excision repair in the removal of mutagenic lesions from the DNA of S. typhimurium cells exposed to high doses of methylating as well as ethylating agents. At the low doses of all the alkylating agents used, the nucleotide excision repair-proficient strain was mutagenized more efficiently than the uvrB mutant. This phenomenon, a consequence of competition between nucleotide excision-repair enzymes and constitutive O6-methylguanine-DNA methyltransferase, is discussed.  相似文献   

13.
14.
Malignant glioma is the most common primary brain tumor. Malignant melanoma is the most malignant of skin tumor. The two malignancies are poorly responsive to conventional treatment regimens such as chemotherapy. Temozolomide (TMZ) is a DNA-alkylating agent used for the treatment of glioma, astrocytoma, and melanoma. Resistance to alkylating agents such as TMZ correlates with increased expression of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Several studies in animal models have demonstrated that decreasing MGMT level with gene therapy could overcome TMZ resistance and enhance tumor cell death. In the present review, we provide an overview of recent advances in this field.  相似文献   

15.
F Laval 《Biochimie》1985,67(3-4):361-364
Pretreatment of H4 (rat hepatoma) cells for 48 h with non toxic doses of alkylating agents methylmethane sulfonate, (MMS), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) renders the cells more resistant to the toxic and mutagenic effects of these compounds. This adaptive response seems to reflect improved repair of methylated lesions in cellular DNA. Therefore, we measured the activity of the DNA-glycosylase for N-methylated purines (7-MeGua and 3-MeAd) and the activity of the O6-methylguanine-DNA methyltransferase in control and adapted cells. We show that the adaptive response does not significantly increase the DNA-glycosylase activity but involves the induction of methyltransferase molecules.  相似文献   

16.
N-nitrosodimethylamine N-demethylase activity, DNA alkylation, capacity for O6-methylguanine repair and cell proliferation were measured in livers of newborn and adult CFW mice after a single carcinogenic dose of DMNA. DNA alkylation was found in newborn and adult mouse livers but it was significantly higher in the newborn. 6- and 7-methyl substitutions of guanine were identified by HPLC analysis in newborn and in adult mouse livers. Metabolic 14C incorporation into adenine and guanine was observed only in liver DNA of newborns. O6-methylguanine levels were higher in newborn than adult mice after a single i.p. dose of [14C]DNMA. Liver DNA repair capacity measured as O6-meG-DNA methyltransferase was higher in adults than in newborns. De novo liver DNA synthesis was more inhibited by DMNA pretreatment in newborn than in adult mice. The relationship between these parameters and the greater neonatal liver tumor susceptibility is discussed.  相似文献   

17.
DNA repair by O6-methylguanine-DNA methyltransferase (O6-MT) is accomplished by removal by the enzyme of the methyl group from premutagenic O6-methylguanine-DNA, thereby restoring native guanine in DNA. The methyl group is transferred to an acceptor site cysteine thiol group in the enzyme, which causes the irreversible inactivation of O6-MT. We detected a variety of different forms of the methylated, inactivated enzyme in crude extracts of human spleen of molecular weights higher and lower than the usually observed 21-24kDa for the human O6-MT. Several apparent fragments of the methylated form of the protein were purified to homogeneity following reaction of partially-purified extract enzyme with O6-[3H-CH3]methylguanine-DNA substrate. One of these fragments yielded amino acid sequence information spanning fifteen residues, which was identified as probably belonging to human methyltransferase by virtue of both its significant sequence homology to three procaryote forms of O6-MT encoded by the ada, ogt (both from E. coli) and dat (B. subtilis) genes, and sequence position of the radiolabelled methyl group which matched the position of the conserved procaryote methyl acceptor site cysteine residue. Statistical prediction of secondary structure indicated good homologies between the human fragment and corresponding regions of the constitutive form of O6-MT in procaryotes (ogt and dat gene products), but not with the inducible ada protein, indicating the possibility that we had obtained partial amino acid sequence for a non-inducible form of the human enzyme. The identity of the fragment sequence as belonging to human methyltransferase was more recently confirmed by comparison with cDNA-derived amino acid sequence from the cloned human O6-MT gene from HeLa cells (1). The two sequences compared well, with only three out of fifteen amino acids being different (and two of them by only one nucleotide in each codon).  相似文献   

18.
Tobacco, smoked, snuffed and chewed, contains powerful mutagens and carcinogens. At least three of them, N-dimethylnitrosamine, N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, attack DNA at the O(6)-position of guanine. The resulting O(6)-alkylguanine adducts are repaired by the suicide enzyme O(6)-methylguanine-DNA methyltransferase (MGMT), which is known to protect against the mutagenic, genotoxic and carcinogenic effects of monofunctional alkylating agents. While in rat liver MGMT was shown to be subject to regulation by genotoxic stress leading to adaptive changes in its activity, in humans evidence of adaptive modulation of MGMT levels is still lacking. Several polymorphisms are known, which are suspected to impact on the risk of developing cancer. In this review we focus on three questions: (a) Has tobacco consumption by smoking or chewing an impact on MGMT expression and MGMT promoter methylation in normal and tumor tissue? (b) Is there an association between MGMT polymorphisms and cancer risk and is this risk related to smoking? (c) Does MGMT protect against tobacco-associated cancer? There are several lines of evidence for an increase of MGMT activity in the normal tissue of smokers compared to non-smokers. Furthermore, in tumors developed in smokers a tendency towards an increase of MGMT expression was found. The data points to the possibility that agents in tobacco smoke are able to trigger upregulation of MGMT in normal and tumor tissue. For MGMT promoter methylation data is conflicting. There is some evidence for an association between MGMT polymorphisms and smoking-induced cancer risk. The key question whether or not MGMT protects against tobacco smoke-induced cancer is difficult to answer since prospective studies on smokers versus non-smokers are lacking and appropriate animal studies with MGMT transgenic mice exposed to the complex mixture of tobacco smoke have not been performed, which indicates the need for further explorations.  相似文献   

19.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA damage sensor and contributes to both DNA repair and cell death processes. However, how PARP-1 signaling is regulated to switch its function from DNA repair to cell death remains largely unknown. Here, we found that PARP-1 plays a central role in alkylating agent-induced PARthanatic cancer cell death. Lysine demethylase 6B (KDM6B) was identified as a key regulator of PARthanatos. Loss of KDM6B protein or its demethylase activity conferred cancer cell resistance to PARthanatic cell death in response to alkylating agents. Mechanistically, KDM6B knockout suppressed methylation at the promoter of O6-methylguanine-DNA methyltransferase (MGMT) to enhance MGMT expression and its direct DNA repair function, thereby inhibiting DNA damage-evoked PARP-1 hyperactivation and subsequent cell death. Moreover, KDM6B knockout triggered sustained Chk1 phosphorylation and activated a second XRCC1-dependent repair machinery to fix DNA damage evading from MGMT repair. Inhibition of MGMT or checkpoint response re-sensitized KDM6B deficient cells to PARthanatos induced by alkylating agents. These findings provide new molecular insights into epigenetic regulation of PARP-1 signaling mediating DNA repair or cell death and identify KDM6B as a biomarker for prediction of cancer cell vulnerability to alkylating agent treatment.  相似文献   

20.
Kaina B  Christmann M  Naumann S  Roos WP 《DNA Repair》2007,6(8):1079-1099
O(6)-methylguanine-DNA methyltransferase (MGMT) plays a crucial role in the defense against alkylating agents that generate, among other lesions, O(6)-alkylguanine in DNA (collectively termed O(6)-alkylating agents [O(6)AA]). The defense is highly important, since O(6)AA are common environmental carcinogens, are formed endogenously during normal cellular metabolism and possibly inflammation, and are being used in cancer therapy. O(6)AA induced DNA damage is subject to repair, which is executed by MGMT, AlkB homologous proteins (ABH) and base excision repair (BER). Although this review focuses on MGMT, the mechanism of repair by ABH and BER will also be discussed. Experimental systems, in which MGMT has been modulated, revealed that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine are major mutagenic, carcinogenic, recombinogenic, clastogenic and killing lesions. O(6)MeG-induced clastogenicity and cell death require MutS alpha-dependent mismatch repair (MMR), whereas O(6)-chloroethylguanine-induced killing occurs independently of MMR. Extensive DNA replication is required for O(6)MeG to provoke cytotoxicity. In MGMT depleted cells, O(6)MeG induces apoptosis almost exclusively, barely any necrosis, which is presumably due to the remarkable ability of secondarily formed DNA double-strand breaks (DSBs) to trigger apoptosis via ATM/ATR, Chk1, Chk2, p53 and p73. Depending on the cellular background, O(6)MeG activates both the death receptor and the mitochondrial apoptotic pathway. The inter-individual expression of MGMT in human lymphocytes is highly variable. Given the key role of MGMT in cellular defense, determination of MGMT activity could be useful for assessing a patient's drug sensitivity. MGMT is expressed at highly variable amounts in human tumors. In gliomas, a correlation was found between MGMT activity, MGMT promoter methylation and response to O(6)AA. Although the human MGMT gene is inducible by glucocorticoids and genotoxins such as radiation and alkylating agents, the role of this induction in the protection against carcinogens and the development of chemotherapeutic alkylating drug resistance are still unclear. Modulation of MGMT expression in tumors and normal tissue is currently being investigated as a possible strategy for improving cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号