首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shier and Watt isolated human and guinea pig genomic DNA encoding a putative protein, insulin receptor-related receptor (IRR), the primary structure of which is similar to that of other members of the insulin receptor family, the insulin receptor and type-I IGF receptor (J. Biol. Chem. 264, 14605-14608 (1989)). However, the expression of the IRR gene remained unknown. In this paper, we isolated the IRR cDNA from the rat brain and examined the expression of the IRR mRNA in a variety of rat tissues, including the brain, heart, lung, liver, small intestine, kidney, thymus, spleen, muscle, adipose tissue and cartilage by polymerase chain reaction. In contrast to the wide distribution of the insulin receptor and type-I IGF receptor mRNAs, the IRR mRNA is expressed preferentially in the kidney, which indicates that IRR has unique functions as a member of the insulin receptor family.  相似文献   

2.
The insulin receptor related receptor (IRR) is a heterotetrameric transmembrane receptor with intrinsic tyrosine kinase activity. The IRR shares large homology with the insulin and the insulin-like growth factor-1 (IGF-I) receptor with regard to amino acid sequence and protein structure. So far, only a partial human sequence containing the complete 3' end has been reported, although the full-length human IRR cDNA had been used for transfection studies and functional analysis of the receptor. We have isolated a full-length human IRR cDNA and report on the 5' translated and untranslated region of the human IRR gene. The full length IRR sequence contains 4150 bases and shares a high degree of homology with the guinea pig IRR cDNA sequence and rat IRR sequences that had been reported earlier on by others. Sequencing of the IRR cDNA revealed that the human IRR cDNA contains 341 bases corresponding to the IRR 5' end in addition to the bases that had been reported on before. Also, this sequence contains the start codon of translation. The full length cDNA for the human IRR can now be used for functional expression studies and to elucidate the nature of the ligand for this receptor type.  相似文献   

3.
4.
In 1989, Shier and Watt identified a gene which was predicted to encode a new member of the insulin receptor (IR) family, and they called it the insulin receptor-related receptor (IRR) (Shier, P., and Watt, V. M. (1989) J. Biol. Chem. 264, 14605-14608). However, the tissues expressing this receptor, its ligand binding specificity and its signaling capability have remained unknown. In the present studies we report Northern blot analyses and polymerase chain reaction data, which indicate that the IRR mRNA is expressed in a variety of tissues, including the human kidney, heart, skeletal muscle, liver, and pancreas. In order to examine the ligand(s) recognized by IRR, we constructed a chimeric receptor with the extracellular domain of the IR replaced with that of IRR. This chimera was found not to bind radioactively labeled insulin, insulin-like growth factor I (IGF-I), or IGF-II. These ligands and relaxin, the only other known member of the mammalian insulin family, also failed to stimulate the tyrosine kinase activity of this chimeric receptor. A second chimeric receptor with the extracellular domain of IR and the kinase domain of IRR was also constructed and utilized to study the signaling capabilities of the kinase domain of IRR. This chimera exhibited high affinity insulin binding and insulin-stimulated tyrosine kinase activity. The kinase domains of the IR and IRR were found capable of phosphorylating the same spectrum of exogenous and endogenous substrates. However, Chinese hamster ovary (CHO) cells stably overexpressing the kinase domain of IRR exhibited elevated basal thymidine incorporation and 2-deoxyglucose uptake compared with CHO cells and CHO cells overexpressing wild-type IR. We conclude that: 1) IRR is expressed in the human kidney, heart, skeletal muscle, liver, and pancreas, 2) IRR does not appear to be the receptor of any known member of the insulin family, and 3) the tyrosine kinase of IRR appears to be similar to that of IR in both the spectrum of substrates phosphorylated and the biological responses stimulated.  相似文献   

5.
The insulin receptor-related receptor (IRR), an orphan receptor tyrosine kinase of the insulin receptor family,?can be activated by alkaline media both in?vitro and in?vivo at pH >7.9. The alkali-sensing property of IRR is conserved in frog, mouse, and human. IRR activation is specific, dose-dependent and quickly reversible and demonstrates positive cooperativity. It also triggers receptor conformational changes and elicits intracellular signaling. The pH sensitivity of IRR is primarily defined by its L1F extracellular domains. IRR is predominantly expressed in organs that come in contact with mildly alkaline media. In particular, IRR is expressed in the cell subsets of the kidney that secrete bicarbonate into urine. Disruption of IRR in mice impairs the renal response to alkali loading attested by development of metabolic alkalosis and decreased urinary bicarbonate excretion in response to this challenge. We therefore postulate that IRR is an alkali sensor that functions in the kidney to manage metabolic bicarbonate excess.  相似文献   

6.
B Zhang  R A Roth 《Biochemistry》1991,30(21):5113-5117
We constructed and expressed chimeric receptor cDNAs with insulin receptor exon 3 (residues 191-297 of the cysteine-rich region) replaced with either the comparable region of the insulin-like growth factor I receptor (IGF-IR) or the insulin receptor related receptor (IRR). Both chimeric receptors still could bind insulin with as high affinity as the wild-type receptor. In addition, chimeric receptors containing exon 3 of the IGF-IR could also bind with high affinity both IGF-I and IGF-II. In contrast, chimeric receptors containing exon 3 of IRR did not bind either IGF-I, IGF-II, or relaxin. These results indicate that (1) the high affinity of binding of insulin to its receptor can occur in the absence of insulin receptor specific residues encoded by exon 3, the cysteine-rich region; (2) the cysteine-rich region of the IGF-I receptor can confer high-affinity binding to both IGF-I and IGF-II; and 3) the IRR is unlikely to be a receptor for either IGF-I, IGF-II, or relaxin.  相似文献   

7.
Receptors of the insulin/insulinlike growth factor (IGF) family have been implicated in the regulation of pancreatic beta-cell growth and insulin secretion. The insulin receptor-related receptor (IRR) is an orphan receptor of the insulin receptor gene (Ir) subfamily. It is expressed at considerably higher levels in beta cells than either insulin or IGF-1 receptors, and it has been shown to engage in heterodimer formation with insulin or IGF-1 receptors. To address whether IRR plays a physiologic role in beta-cell development and regulation of insulin secretion, we have characterized mice lacking IRR and generated a combined knockout of Ir and Irr. We report that islet morphology, beta-cell mass, and secretory function are not affected in IRR-deficient mice. Moreover, lack of IRR does not impair compensatory beta-cell hyperplasia in insulin-resistant Ir(+/-) mice, nor does it affect beta-cell development and function in Ir(-/-) mice. We conclude that glucose-stimulated insulin secretion and embryonic beta-cell development occur normally in mice lacking Irr.  相似文献   

8.
Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH > 7.9. The activation of IRR with hydroxyl anion has typical features of ligand–receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid–base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

9.
The insulin receptor-related receptor (IRR) is a member of the insulin receptor family. So far no ligand has yet been discovered for this receptor type (orphan receptor). IRR, insulin receptor (IR), and insulin-like growth factor-I receptor (IGF-I-R) are all tyrosine kinases. The cellular function of the IRR is not known. The expression of IRR mRNA is restricted to a few, e.g. neuronal tissues, and has also been found in neuroblastomas. Since tyrosine kinase receptors, including the IGF-I-R, may be involved in tumor genesis, we examined the expression of IRR mRNA and IGF-I-mRNA in 18 tumor cell lines using RT-PCR and the solution hybridization/RNAse protection assay. In particular, the mRNA levels of IRR and IGF-I-R were compared by semi-quantitative RT-PCR in seven neuroblastomas and 11 soft tissue sarcomas (STS), five of which were of neuronal origin. In all of the seven neuroblastoma cell lines and in five of the 11 STS cell lines, the IRR mRNA was detected. In addition, the IRR mRNA was expressed in rhabdomyosarcoma, in leiomyosarcoma, in one of the Ewing sarcoma and in the neurofibrosarcoma cell line. The last two tumor cell types are of neuronal origin. The levels of expression of IGF-I-R and IRR mRNA of the neuroblastoma cell lines were closely related (r = 0.82, P < 0.002). Furthermore, IRR mRNA was found only in cell lines that also expressed IGF-I-R mRNA. In conclusion, cell lines from pediatric tumors of neuronal origin express IRR mRNA simultaneously with a another tyrosine kinase receptor (IGF-I-R) mRNA. The tight coupling of their mRNA expression suggests a functional association of both receptors in the tumor cells.  相似文献   

10.
Insulin receptor-related receptor (IRR), an orphan receptor in the insulin receptor (IR) family of receptor tyrosine kinases, is primarily localized to neural crest-derived sensory neurons during embryonic development. Expression of IRR closely resembles that of the nerve growth factor receptor, TrkA. To analyze the signaling properties and function of IRR in PC12 cells, a TrkB/IRR hybrid receptor was used. In contrast to IR activation, brain-derived neurotrophic growth factor-mediated activation of the TrkB/IRR receptor resulted in differentiation rather than proliferation. Analysis of cytoplasmic substrates activated by the TrkB/IRR receptor indicates a signaling pathway similar to that of the IR. Mutagenesis studies further show that only TrkB/IRR receptors able to phosphorylate mitogen-activated protein kinase elicit a differentiation response. Our analysis indicates that prolonged kinetics of mitogen-activated protein kinase activation mediated by the TrkB/IRR chimeric receptor correlates with induction to differentiate.  相似文献   

11.
Although insulin receptor (InsR) and type I insulin-like growth factor receptor (IGF-IR) elicit different physiological effects in their target tissues, their signaling capabilities are similar to a large extent. In the present work, we investigated the potential of the third member of the family, insulin receptor-related receptor (IRR), to associate with known interaction partners of the InsR and the IGF-I receptor in a yeast two-hybrid assay. Using the intracellular part of the IRR we found no association with any of the tested signaling molecules. Phosphotyrosine detection revealed a lack in the constitutive activation of the IRR described for analogous constructs of the two other members of the family. Replacement of the kinase domain of the IGF-IR or its C-terminal lobe alone into the IRR caused a complete restoration of the tyrosine phosphorylation of the IRR. The reestablishment of autophosphorylation was paralleled by restoration of interaction with a specific range of signaling molecules.  相似文献   

12.
13.
The insulin receptor-related receptor (IRR) is the only known metabotropic sensor of extracellular alkaline medium involved in the regulation of the acid–base balance in the body. IRR is expressed in certain cell populations of the kidney, stomach, and pancreas that can come into contact with the extracellular fluids with alkaline pH. To study IRR structure and function, we obtained a stable hybridoma cell-line-producing antibody to the extracellular portion of the receptor. The monoclonal antibody isolated from ascitic fluids showed a positive reaction with the antigen in the ELISA test. The minimum working concentration of antibodies was 12.5 ng/mL. The ability of the antibodies to specifically recognize the purified ectodomain of IRR and the fulllength receptor was confirmed by western blot, immunoprecipitation, and immunocytochemistry.  相似文献   

14.
The molecular phylogeny of the vertebrate insulin receptor (IR) family was reconstructed under maximum likelihood (ML) to establish homologous relationships among its members. A sister group relationship between the orphan insulin-related receptor (IRR) and the insulin-like growth factor 1 receptor (IGF1R) to the exclusion of the IR obtained maximal bootstrap support. Although both IR and IGF1R were identified in all vertebrates, IRR could not be found in any teleost fish. The ancestral character states at each position of the receptor molecule were inferred for IR, IRR + IGF1R, and all 3 paralogous groups based on the recovered phylogeny using ML in order to determine those residues that could be important for the specific function of IR. For 18 residues, ancestral character state of IR was significantly distinct (probability >0.95) with respect to the corresponding inferred ancestral character states both of IRR + IGF1R and of all 3 vertebrate paralogs. Most of these IR distinct (shared derived) residues were located on the extracellular portion of the receptor (because this portion is larger and the rate of generation of IR shared derived sites is uniform along the receptor), suggesting that functional diversification during the evolutionary history of the family was largely generated modifying ligand affinity rather than signal transduction at the tyrosine kinase domain. In addition, 2 residues at positions 436 and 1095 of the human IR sequence were identified as radical cluster-specific sites in IRR + IGF1R. Both Ir and Irr have an extra exon (namely exon 11) with respect to Igf1r. We used the molecular phylogeny to infer the evolution of this additional exon. The Irr exon 11 can be traced back to amphibians, whereas we show that presence and alternative splicing of Ir exon 11 seems to be restricted exclusively to mammals. The highly divergent sequence of both exons and the reconstructed phylogeny of the vertebrate IR family strongly indicate that both exons were acquired independently by each paralog.  相似文献   

15.
The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight 'twist' rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals.  相似文献   

16.
Russian Journal of Bioorganic Chemistry - The insulin receptor-related receptor (IRR) is a cellular sensor of a weakly alkaline medium. Its spatial structure and the mechanism of activation have...  相似文献   

17.
18.
IRR is a member of the insulin receptor (IR) family that does not have any known agonist of a peptide nature but can be activated by mildly alkaline medium and was thus proposed to function as an extracellular pH sensor. IRR activation by alkali is defined by its N-terminal extracellular region. To reveal key structural elements involved in alkali sensing, we developed an in vitro method to quantify activity of IRR and its mutants. Replacing the IRR L1C domains (residues 1–333) or L2 domain (residues 334–462) or both with the homologous fragments of IR reduced the receptor activity to 35, 64, and 7% percent, respectively. Within L1C domains, five amino acid residues (Leu-135, Gly-188, Arg-244, and vicinal His-318 and Lys-319) were identified as IRR-specific by species conservation analysis of the IR family. These residues are exposed and located in junctions between secondary structure folds. The quintuple mutation of these residues to alanine had the same negative effect as the entire L1C domain replacement, whereas none of the single mutations was as effective. Separate mutations of these five residues and of L2 produced partial negative effects that were additive. The pH dependence of cell-expressed mutants (L1C and L2 swap, L2 plus triple LGR mutation, and L2 plus quintuple LGRHK mutation) was shifted toward alkalinity and, in contrast with IRR, did not show significant positive cooperativity. Our data suggest that IRR activation is not based on a single residue deprotonation in the IRR ectodomain but rather involves synergistic conformational changes at multiple points.  相似文献   

19.
The immunoglobulin fraction of a polyclonal anti-insulin receptor antibody (B-10) derived from a patient with severe insulin resistance and acanthosis nigricans was tested for its ability to activate the protein kinase activity of the insulin receptor and to mimic insulin action in Chinese hamster ovary cells expressing either wild type or kinase-deficient human insulin receptors. This antiserum had previously been reported to be insulinmimetic without activating the insulin receptor protein tyrosine kinase. Antibody B-10 bound to both wild type and mutant human insulin receptors, but it induced receptor down-regulation and stimulated hexose transport and thymidine incorporation into DNA only in cells expressing the wild type receptor. Furthermore, this antibody activated the kinase activity of the wild type insulin receptor in intact cells and in vitro. It is likely, therefore, that the biological activities of antibody B-10, like those of insulin, depend upon the protein tyrosine kinase activity of the insulin receptor.  相似文献   

20.
The aim of the study was to investigate if the insulin analogue glargine, with an increased affinity for the IGF-I receptor (IGF-IR), affects the cell growth to a larger extent than human insulin in malignant cells expressing IGF-IRs. The breast cancer cell lines MCF-7 and SKBR-3, and the osteosarcoma cell line SaOS-2 were used. Gene expression was determined by real-time RT-PCR and receptor protein quantified by ELISAs. Receptor phosphorylation was assessed by immunoprecipitation and Western blot. Mitogenic effect was determined as (3)H-thymidine incorporation into DNA. The gene expression of insulin receptor (IR) varied between 4.3-7.5 x 10(-3) and the expression of IGF-IR between 7.7-147.7 x 10(-3) in relation to GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Insulin receptor and IGF-IR protein varied between 2.0-4.1 ng/mg protein and 2.0-40.4 ng/mg protein, respectively. The IGF-IR was phosphorylated by IGF-I at a concentration of 10(-10)-10(-9) M. All three polypeptides stimulated DNA synthesis in MCF-7, SKBR-3, and SaOS-2 cells. SaOS-2 cells were more sensitive to IGF-I than to insulin and glargine. MCF-7 cells were more sensitive to des(1-3)IGF-I than to IGF-I. In SKBR-3 and SaOS-2 cells, glargine tended to be more potent than human insulin to stimulate DNA synthesis. Our results suggest that glargine, compared to human insulin, has little or no increased mitogenic effect in malignant cells expressing IGF-IRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号