首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
A null mutation of the glucocorticoid receptor was generated by homologous recombination. Mutant newborn mice showed impaired lung development, hypertrophy of the adrenal cortex and a strongly reduced size of the adrenal medulla. Phenylethanolamine N-methyltransferase (PNMT) was undetectable in the adrenals of the mutant mice. Serum levels of corticosterone were moderately and ACTH levels were strongly elevated in the mutants. A weaker but significant increase of corticosterone and ACTH was observed already in heterozygous animals. This points to a dysregulation of the HPA axis due to defective feedback regulation via the glucocorticoid receptor. Liver gluconeogenetic enzymes were reduced to a variable degree. Whereas survival of heterozygous mutants was not affected, most of the homozygous mutant mice died during the perinatal period.  相似文献   

5.
6.
Glucocorticoids play an important role in the normal regulation of bore remodeling; however continued exposure of bone to glucocorticoid excess results in osteoporosis. In vivo, glucocorticoids stimulate bone resorption and decreasae bone formation, and in vitro studies have shown that while glucocorticoids stimulateosteoblastic differentiation, they have important inhibitory actions on bone formation. Glucocorticoids have manyeffects on osteoblast gene expression, including down-regulation of type 1 collagen and osteocalcin, and up-regulation of interstitial collagenase. The synthesis and activity of osteoblast growth factors can be modulated by glucocorticoids as well. For example, insulin-like growth factor 1 (IGF-1) is an important stimulator of osteoblast function, and expression of IGF-1 is decreased by glucocorticoids. The activity of IGF 1 can be modified by IGF binding proteins (IGFBPs), and theirsynthesis is also regulated by glucocorticoids. Thus, glucocorticoid action on osteoblasts can be direct, by activating or repressing osteoblast gene expression, or indirect by altering the expression or activity of osteoblast growth factors. Further investigation of the mechanisms by which glucocorticoids mnodulate gene expression in bore cells will contribute to our understanding or steroid hormone biology and will provide a basis for the design of effective treatments for glucocorticoid-induced osteoporosis.  相似文献   

7.
Exposure to stress activates the hypothalamic–pituitary–adrenal axis and leads to increased levels of glucocorticoid (GC) hormones. Prolonged elevation of GC levels causes neuronal dysfunction, decreases the density of synapses, and impairs neuronal plasticity. Decreased sensitivity to glucocorticoids (glucocorticoid resistance) that develops as a result of chronic stress is one of the characteristic features of stress-induced psychopathologies. In this article, we reviewed the published data on proposed molecular mechanisms that contribute to the development of glucocorticoid resistance in brain, including changes in the expression of the glucocorticoid receptor (GR) gene, biosynthesis of GR isoforms, and GR posttranslational modifications. We also present data on alterations in the expression of the FKBP5 gene encoding the main component of cell ultra-short negative feedback loop of GC signaling regulation. Recent discoveries on stressand GRinduced changes in epigenetic modification patterns as well as normalizing action of antidepressants are discussed. GR and FKBP5 gene polymorphisms associated with stress-induced psychopathologies are described, and their role in glucocorticoid resistance is discussed.  相似文献   

8.
The review summarizes recent data and current opinions of the Ca2+ signal formation in cells. Mechanisms of Ca2+ mobilization from the intracellular Ca2+ stores are discussed along with the pathways of Ca2+ entry from the external medium.  相似文献   

9.
10.

Objective

Glucocorticoids at pharmacological doses have been shown to interfere with fracture repair. The role of endogenous glucocorticoids in fracture healing is not well understood. We examined whether endogenous glucocorticoids affect bone healing in an in vivo model of cortical defect repair.

Methods

Experiments were performed using a well characterised mouse model in which intracellular glucocorticoid signalling was disrupted in osteoblasts through transgenic overexpression of 11β-hydroxysteroid-dehydrogenase type 2 (11β-HSD2) under the control of a collagen type I promoter (Col2.3-11β-HSD2). Unicortical bone defects (∅0.8 mm) were created in the tibiae of 7-week-old male transgenic mice and their wild-type littermates. Repair was assessed via histomorphometry, immunohistochemistry and microcomputed tomography (micro-CT) analysis at 1-3 weeks after defect creation.

Results

At week 1, micro-CT images of the defect demonstrated formation of mineralized intramembranous bone which increased in volume and density by week 2. At week 3, healing of the defect was nearly complete in all animals. Analysis by histomorphometry and micro-CT revealed that repair of the bony defect was similar in Col2.3-11β-HSD2 transgenic animals and their wild-type littermates at all time-points.

Conclusion

Disrupting endogenous glucocorticoid signalling in mature osteoblasts did not affect intramembranous fracture healing in a tibia defect repair model. It remains to be shown whether glucocorticoid signalling has a role in endochondral fracture healing.  相似文献   

11.
12.
Hedgehog proteins constitute one of a small number of families of secreted signals that have a central role in the development of metazoans. Genetic analyses in flies, fish and mice have uncovered the major components of the pathway that transduces Hedgehog signals, and recent genome sequence projects have provided clues about its evolutionary origins. In this Review we provide an updated overview of the mechanisms and functions of this signalling pathway, highlighting the conserved and divergent features of the pathway, as well as some of the common themes in its deployment that have emerged from recent studies.  相似文献   

13.
Several monoclonal antibodies directed against a number of T cell surface molecules are used to elucidate the role of these molecules (cell surface molecules) in T cell activation. The activation of T cells via these molecules are both antigen-dependent (CD3/TcR complex) and antigen-independent. Irrespective of their antigen-dependency, these monoclonal antibodies activate T cells by a classical signal transduction pathway, in which the binding of monoclonal antibodies to their cell surface receptors leads to activation of phospholipase C resulting in the the depolarization of plasma membrane, hydrolysis of IP2 and IP3 and DAG, the second messengers. IP3 leads to mobilization of intracellular calcium to contribute to an increase in [Ca++]i, whereas DAG causes activation and translocation of PKC and an increasing apparent affinity for Ca++. The role of IN in the mobilization of intracellular calcium is emerging. In addition, influx of extracellular calcium also contributes to increase in [Ca–+];. The increase in [Ca++]; following activation via some T cell surface antigen is predominantly due to intracellular mobilization of Ca–+ (e.g. CD3/TcR complex), whereas activation via other T cell surface antigen, the increase in [Ca+–]i is almost entirely due to an influx of extracellular calcium (e.g. CD5 antigen). All these molecules activate autocrine system of T cell growth, namely IL-2 production, IL-2 receptor expression and T cell proliferation.  相似文献   

14.
Mechanisms underlying intracellular calcium signals in Bergmann glial cells evoked by various neurotransmitters were investigated in experiments on cerebellar slices acutely isolated from 30-day-old mice. [Ca2+] in values were measured by means of a Ca2+-sensitive fluorescent probe fura-2. Extracellular application of ATP (10–100 µM), histamine (10–100 µM), or noradrenaline (or adrenaline, 0.1–10.0 µM) caused a temporary increase in cytoplasmic Ca2+ concentrations. The effect persisted in Ca2+-free extracellular solution and was blocked with thapsigargin (500 nM) or a specific blocker of the inositol-1,4,5-trisphosphate-sensitive intracellular channels heparin. Based on the pharmacological analysis, we postulate the involvement of P2 purinoreceptors, 1-adrenoreceptors, and H1 histamine receptors in an agonist-activated increase in [Ca2+] in in Bergmann glia. Thus, ATP, monoamines, or histamine induce calcium signal generation in Bergmann glial cells via activation of Ca2+ release from the inositol-1,4,5-trisphosphate-sensitive internal stores.Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 417–419, November–December, 1994.  相似文献   

15.
16.
17.
We investigated the mechanisms underlying the protective action of glucocorticoids against indomethacin-induced gastric lesions. One-week adrenalectomized rats with or without corticosterone replacement (4 mg/kg sc) were administered indomethacin (25 mg/kg sc), and gastric secretion (acid, pepsin, and mucus), motility, microvascular permeability, and blood glucose levels were examined. Indomethacin caused gastric lesions in sham-operated rats, with an increase in gastric motility and microvascular permeability as well as a decrease in mucus secretion. Adrenalectomy significantly worsened the lesions and potentiated these functional disorders. Glucose levels were lowered by indomethacin in sham-operated rats, and this response was enhanced by adrenalectomy. The changes observed in adrenalectomized rats were prevented by supplementations of corticosterone at a dose mimicking the indomethacin-induced rise in corticosterone, whereas the protective effect of corticosterone was attenuated by RU-38486, a glucocorticoid receptor antagonist. We conclude that the gastroprotective action of endogenous glucocorticoids may be provided by their support of glucose homeostasis and inhibitory effects on enhanced gastric motility and microvascular permeability as well as maintaining the production of mucus.  相似文献   

18.
19.
Molecular mechanisms underlying the generation of distinct cell phenotypes is a key issue in developmental biology. A major paradigm of determination of neural cell fate concerns the development of sympathetic neurones and neuroendocrine chromaffin cells from a common sympathoadrenal (SA) progenitor cell. Two decades of in vitro experiments have suggested an essential role of glucocorticoid receptor (GR)-mediated signalling in generating chromaffin cells. Targeted mutation of the GR should consequently abolish chromaffin cells. The present analysis of mice lacking GR gene product demonstrates that animals have normal numbers of adrenal chromaffin cells. Moreover, there are no differences in terms of apoptosis and proliferation or in expression of several markers (e.g. GAP43, acetylcholinesterase, adhesion molecule L1) of chromaffin cells in GR-deficient and wild-type mice. However, GR mutant mice lack the adrenaline-synthesizing enzyme PNMT and secretogranin II. Chromaffin cells of GR-deficient mice exhibit the typical ultrastructural features of this cell phenotype, including the large chromaffin granules that distinguish them from sympathetic neurones. Peripherin, an intermediate filament of sympathetic neurones, is undetectable in chromaffin cells of GR mutants. Finally, when stimulated with nerve growth factor in vitro, identical proportions of chromaffin cells from GR-deficient and wild-type mice extend neuritic processes. We conclude that important phenotypic features of chromaffin cells that distinguish them from sympathetic neurones develop normally in the absence of GR-mediated signalling. Most importantly, chromaffin cells in GR-deficient mice do not convert to a neuronal phenotype. These data strongly suggest that the dogma of an essential role of glucocorticoid signalling for the development of chromaffin cells must be abandoned.  相似文献   

20.
SIRT2 is a NAD+‐dependent deacetylase that deacetylates a diverse array of protein substrates and is involved in many cellular processes, including regulation of inflammation. However, its precise role in the inflammatory process has not completely been elucidated. Here, we identify heat‐shock protein 90α (Hsp90α) as novel substrate of SIRT2. Functional investigation suggests that Hsp90 is deacetylated by SIRT2, such that overexpression and knock‐down of SIRT2 altered the acetylation level of Hsp90. This subsequently resulted in disassociation of Hsp90 with glucocorticoid receptor (GR), and translocation of GR to the nucleus. This observation was further confirmed by glucocorticoid response element (GRE)‐driven reporter assay. Nuclear translocation of GR induced by SIRT2 overexpression repressed the expression of inflammatory cytokines, which were even more prominent under lipopolysaccharide (LPS) stimulation. Conversely, SIRT2 knock‐down resulted in the up‐regulation of cytokine expression. Mutation analysis indicated that deacetylation of Hsp90 at K294 is critical for SIRT2‐mediated regulation of cytokine expression. These data suggest that SIRT2 reduces the extent of LPS‐induced inflammation by suppressing the expression of inflammatory factors via SIRT2‐Hsp90‐GR axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号