首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leaching of pyrite sulfur from coal employing Thiobacillus Ferrooxidans was studied in a continuous stirred tank reactor at a variety of dilution rates (0.02-0.11 h(-1)) and coal surface areas (0.25-1.0 m(2)/mL). The bacterial leaching rate was found to increase with increasing coal surface area concentration and increasing dilution rate. The bacterial concentration on the coal surface was related to the bacterial concentration in solution by a irreversible second-order (of the second kind) kinetic equation. The concentration of bacteria on the coal in all experiments was the concentration at saturation. Step changes in the coal concentration were observed to result in dramatic declines in bacterial concentration in solution. A bacterial mass balance model was employed to calculate the specific growth rate on the solid which was observed to increase with increasing dilution rate.  相似文献   

2.
The effect of dilution rate and feed solids concentration on the bacterial leaching of a pyrite/arsenopyrite ore concentrate was studied. A mathematical model was developed for the process based on the steady-state data collected over the range of dilution rates (20 to 110 h) and feed solids concentrations (6 to 18% w/v) studied. A modified Monod model with inhibition by arsenic was used to model bacterial ferrous ion oxidation rates. The model assumes that (i) pyrite and arsenopyrite leaching occurs solely by the action of ferric iron produced from the bacterial oxidation of ferrous iron and (ii) bacterial growth rates are proportional to ferrous ion oxidation rate. The equilibrium among the various ionic species present in the leach solution that are likely to have a significant effect on the bioleach process were included in the model. (c) 1994 John Wiley & Sons, Inc.  相似文献   

3.
A zinc sulfide concentrate was leached microbiologically by Thiobacillus ferrooxidans in a continuous stirred tank reactor. A model was developed to predict, the leaching kinetics when the bacterial growth rate was not limited by any substrate other than the zinc concentrate, and it was modified to explain the observed results. Stable steady sates were obtained over a range of dilution rates from 0.0171 to 0.1038 hr?1. Because a solid substrate was used, the specific growth rate of the bacaeria was not a unique function of the subastrate concentration, and conventional contnuous culture theory based on the Monod equation did not apply to this system. The leaching rates and bacterial growth rates were first order in mineral surface area cocentration.  相似文献   

4.
Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans.   总被引:15,自引:0,他引:15  
In spite of the environmental and commercial interests in the bacterial leaching of pyrite, two central questions have not been answered after more than 35 years of research: does Thiobacillus ferrooxidans enhance the rate of leaching above that achieved by ferric sulfate solutions under the same conditions, and if so, how do the bacteria affect such an enhancement? Experimental conditions of previous studies were such that the concentrations of ferric and ferrous ions changed substantially throughout the course of the experiments. This has made it difficult to interpret the data obtained from these previous works. The aim of this work was to answer these two questions by employing an experimental apparatus designed to maintain the concentrations in solution at a constant value. This was achieved by using the constant redox potential apparatus described previously (P. I. Harvey, and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586-2592, 1997; T. A. Fowler, and F. K. Crundwell, Appl. Environ. Microbiol. 64:3570-3575, 1998). Experiments were conducted in both the presence and absence of T. ferrooxidans, maintaining the same conditions in solution. The rate of dissolution of pyrite with bacteria was higher than that without bacteria at the same concentrations of ferrous and ferric ions in solution. Analysis of the dependence of the rate of leaching on the concentration of ferric ions and on the pH, together with results obtained from electrochemical measurements, provided clear evidence that the higher rate of leaching with bacteria is due to the bacteria increasing the pH at the surface of the pyrite.  相似文献   

5.
Microbial desulfurization of coal by pyrite oxidizing bacterial enrichment cultures has been studied in air-agitated slurry reactors of 4- and 20-L volumes. Batch experiments showed that inoculation with an active bacterial culture is essential to minimize the lag phase, although a considerable number of pyrite oxidizing bacteria was found on the coal prior to desulfurization. For detailed investigations of kinetics, energy requirements, and technical applicability, a bioreactor equipment consisting of a cascade of eight stages was developed and operated continuously. Microbial desulfurization of coal-monitored by measuring the axial profile of dissolved iron concentration, real and maximum oxygen consumption rates, and cell concentration-at pulp densities to 30% was performed over a period of 200 days without any disturbances concerning the aeration system, fluidization, transport of solids and microbial growth. At a pulp density of 20%, a pyrite conversion of 68% was achieved after the third reactor stage at a total residence time of five days in the first three stages. The kinetics of pyrite degradation were found to be well described by a rate equation of first order in pyrite surface area concentration if the pyrite is directly accessible for microbial attack. Rate constants were determined to 0.48 mg pyrite/(cm(2) day) in the first and to 0.24 mg pyrite/(cm(2) day) in the following reactor stages. Kinetic models taking into account adsorption/desorption as well as growth kinetics failed to describe the observed reaction rates. However, a model treating pyrite degradation and microbial growth kinetics formalistically seems to be applicable when backmixing between the reactor stages can be avoided. The advantage of a multistage reactor in comparison to single-stage equipment was shown by calculation. To obtain a pyrite conversion of 68%, a three-stage reactor would require only 58% of the volume of single-stage equipment.Measurement of oxygen consumption rates proved to provide quickly and easily measurable parameters to observe microbial coal desulfurization in technical scale: the real oxygen consumption rate is correlated to the pyrite oxidation rate and the maximum oxygen consumption rate is correlated to the concentration of viable cells. The Y(o/s) coefficient for the amount of oxygen consumed per mass unit of pyrite oxygen was determined to approximately 0.33 in comparison to 1.0 which can be calculated from stoichiornetry. This could yet not be explained. Chemical leaching experiments as well as sulfur analyses of desulfurized coal samples showed that the microorganisms play the main role in degradation of pyrite from coal and that pyrite oxidation by ferric iron can be neglected.  相似文献   

6.
Microbial desulfurization might be developed as a new process for the removal of pyrite sulfur from coal sluries such as coal-water mixture (CWM). An application of iron-oxidizing bacterium Thiobacillus ferrooxidans to flotation would shorten the periods of the microbial removal of pyrite from some weeks by leaching methods to a few minutes. The floatability of pyrite in flotation was mainly reduced by T. ferrooxidans itself rather than by other microbial substances in bacterial culture as additive of flotation liquor. Floatability was suppressed within a few seconds by bacterial contact. The suppression was proportional to increasing the number of cells observed between bacterial adhesion and the suppression of floatability. If 25% of the total pyrite surface area covered with the bacteria, pyrite floatability would be completely depressed. Bacteria that lost their iron-oxidizing activities by sodium cyanide treatment were also able to adhere to pyrite and reduced pyrite floatability as much as normal bacteria did. Thiobacillus ferrooxidans ATCC 23270, T-1, 9, and 11, which had different iron-oxidizing abilities, suppressed floatability to similar-levels. The oxidizing ability of bacteria did not influence the suppressing effect. These results showed the mechanism of the suppression of pyrite floatability by bacteria. Quick bacterial adhesion to pyrite induced floatability suppression by changing the surface property from hydrophobic. The quick adhesion of the bacterium was the novel function which worked to change the surface property of pyrite to remove it from coal. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
The bioleaching rate of pyrite (FeS2) by the acidophilic thermophile Acidianus brierleyi was studied at 65 degrees C and pH 1.5 with leach solutions supplemented with yeast extract. In the absence of yeast extract supplementation, A. brierleyi could grow autotrophically on pyrite, and the leaching percentage of pyrite particles (25-44 μm) reached 25% for 7 d. The bacterial growth and consequent pyrite oxidation were enhanced by the addition of yeast extract between 0.005 and 0.25% w/v: the pyrite particles were completely solubilized within 6 d. The bioleaching rate was enhanced by a factor of 1.5 when the yeast extract concentration was changed from 0.005 to 0.05% w/v. However, there was only a slight effect on the leaching rate at the yeast extract concentrations of 0.05 to 0. 25% w/v, suggesting that the organic supplement level was in large excess in the pyrite bioleaching. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

8.
In spite of the environmental and commercial interests in the bacterial leaching of pyrite, two central questions have not been answered after more than 35 years of research: does Thiobacillus ferrooxidans enhance the rate of leaching above that achieved by ferric sulfate solutions under the same conditions, and if so, how do the bacteria affect such an enhancement? Experimental conditions of previous studies were such that the concentrations of ferric and ferrous ions changed substantially throughout the course of the experiments. This has made it difficult to interpret the data obtained from these previous works. The aim of this work was to answer these two questions by employing an experimental apparatus designed to maintain the concentrations in solution at a constant value. This was achieved by using the constant redox potential apparatus described previously (P. I. Harvey, and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997; T. A. Fowler, and F. K. Crundwell, Appl. Environ. Microbiol. 64:3570–3575, 1998). Experiments were conducted in both the presence and absence of T. ferrooxidans, maintaining the same conditions in solution. The rate of dissolution of pyrite with bacteria was higher than that without bacteria at the same concentrations of ferrous and ferric ions in solution. Analysis of the dependence of the rate of leaching on the concentration of ferric ions and on the pH, together with results obtained from electrochemical measurements, provided clear evidence that the higher rate of leaching with bacteria is due to the bacteria increasing the pH at the surface of the pyrite.  相似文献   

9.
Bacterial solubilization and oxidation of iron from pyrite were determined with the use of analytical methods which differentiated between total iron and reduced and oxidized forms of soluble iron. About 70% precipitation of Fe(III) was apparent in six-week old cultures. Yeast extract (0.2 and 2%) inhibited the bacterial oxidation of pyrite. Incomplete (∼50%) bacterial oxidation of iron dissolved from pyrite was attributed to the inhibition of the bacterial iron-oxidation at pH 1.2–1.3. Sample pretreatments with ion-exchange resins before analysis indicated that cationic iron concentration was almost identical with that of total iron in bacterial cultures; anionic forms of Fe amounted to about 7% of the total soluble iron.  相似文献   

10.
The enumeration and characterization of microorganisms attached to solid surfaces have always presented significant difficulties. This is particularly true for micro organisms that are indigenous to coal mines and mineral deposits where metal sulfides are ubiquitous. The complications that arise are the result of the variety of inorganic compounds that are present in these environments, the harsh conditions under which the microorganisms proliferate, and the low cell densities to which they grow. The work presented here suggests that epifluorescence microscopy using acridine orange can be a useful probe to study acidophilic metal-leaching bacteria. Experiments involving the growth of Thiobacillus ferrooxidans on iron pyrite are described which indicate a relationship between cell fluorescence color and bacterial activity. Both attached and free-solution cell densities were determined throughout the course of the leaching process and considered along with changes in cell fluorescence color which might be associated with changes in intracellular pH. As such, epifluorescence microscopy, using acridine orange, can be used for assessing the activity of T. ferrooxidans on iron pyrite as well as resolving the controversy concerning the significance of attachment during the leaching process.  相似文献   

11.
Bacterial dissolution of pyrite by Thiobacillus ferrooxidans   总被引:5,自引:0,他引:5  
The kinetics of the dissolution of pure pyrite (FeS2) particles by Thiobacillus ferrooxidans were studied both theoretically and experimentally. Adsorption and dissolution experiments were carried out at 30 °C and pH=2, by using a batch reactor. The adsorption process of T. ferrooxidans to pyrite surface was rapid in comparison with the bacterial dissolution process. The experimental results for the adsorption equilibrium were well correlated by the Langmuir type isotherm. The growth rate of adsorbed bacteria was found to be proportional to the product of the number of adsorbed cells and the fraction of solid surface unoccupied by cells. A new kinetic model for the bacterial dissolution was presented, and shown to correlate well with the experimental data for the rate of bacterial dissolution and for the time variation in the number of cells in the liquid phase. The specific growth rate of adsorbed bacteria was also evaluated.List of Symbols f weight fraction of iron in pyrite - K A m3/cells equilibrium constant for cell adsorption - R A cells/d m3-mixture growth rate of bacteria adsorbed on solid surface - R L cells/d m3-mixture growth rate of free bacteria in the liquid phase - t d time - V m3 volume of solid-liquid mixture - W kg weight of pyrite - W 0 kg initial weight of pyrite - X A cells/kg-solid number of adsorbed cells on solid surface - X Am cells/kg-solid maximum adsorption capacity - X L cells/m3-liquid number of free cells existing in the liquid phase - X T cells/m3-mixture total number of cells - X TO cells/m3 initial total number of cells - Y A cells/kg-FeS2 growth yield of adsorbed bacteria - Y L cells/kg-Fe2+ growth yield of free bacteria - [Fe] T kg/m3-liquid concentration of total iron in the liquid phase - fraction of pyrite dissolved - V fraction of adsorption sites unoccupied by cells - A d–1 specific growth rate of adsorbed bacteria - L d–1 specific growth rate of free bacteria - volume fraction of solid particles in solid-liquid mixture  相似文献   

12.
Solid-Phase Products of Bacterial Oxidation of Arsenical Pyrite   总被引:1,自引:1,他引:0       下载免费PDF全文
Bacterial leaching of an As-containing pyrite concentrate produced acidic (pH < 1) leachates. During the leaching, the bacteria solubilized both As and Fe, and these two elements were distributed in solution-phase and solid-phase products. Jarosite and scorodite were the exclusive crystalline products in precipitate samples from the bacterial leaching of the sulfide concentrate.  相似文献   

13.
Various species of soluble iron in pyrite‐grown cultures of Thiobacillus ferrooxidans were determined by colorimetry, atomic absorption spectrometry, and ultraviolet spectroscopy. All the cultures were incubated for six weeks before iron analysis. The effects of the following factors were investigated: particle size, initial pH, shaking (aeration), concentration of pyrite, and concentration of yeast extract. Shaking, but not initial pH nor particle size, influenced the relative proportion of different iron species. Polynomial regressions could be used to describe the functional relationship between the different iron species and concentration of pyrite; fewer relationships were evident with respect to concentration of yeast extract. The variance‐covariance matrices indicated a linear dependence among the different iron species. Canonical correlations indicated perfect correlations between group variables of iron, copper, and zinc, with the exception of an absence of significant correlation with the hydroxy complex of iron (FeOH2+).

The dissolved ferrous iron (dissociated and weakly chelated) always remained less than 7% of the total iron in solution. The total ferrous iron, which included complexed species, amounted to 7–34% of the total iron in solution. The concentrations of dissociated ferrous and ferric iron and their weak chelates (the dissolved iron) remained mostly constant, irrespective of the concentration of the total iron in solution. Most of the total iron was complexed as ferric species and the amount correlated with culture conditions. The hydroxy complex (FeOH2+), which was indicative of the relative amount of hydrolyzable ferric iron upon dilution in CO2‐free water, usually ranged between 60 and 80% of the total iron. The amount of the total iron in uninoculated controls was less than 12% of that solu‐bilized in the presence of iron‐oxidizing thiobacilli.

T. ferrooxidans was enumerated by a most‐probable‐number technique after three and six weeks of growth on pyrite. The counts after three weeks indicated an increase in the number of free and loosely attached bacteria, followed by a decline of about one order of magnitude in bacterial numbers after six weeks. The technique for bacterial enumeration was deemed unsatisfactory because it could not account for cells attached on pyrite.  相似文献   

14.
A dynamic mathematical model has been developed to describe microbial desulfurization of coal by Thiobacillus ferrooxidans. The model considers adsorption and desorption of cells on coal particles and microbial oxidation of pyritic sulfur on particle surfaces. The influence of certain parameters, such as microbial growth rate constants, adsorption-descrption constants, pulp density, coal particle size, initial cell and solid phase substrate concentration on the maximum rate of pyritic sulfur removal, have been elucidated. The maximum rate of pyritic sulfur removal was strongly dependent upon the number of attached cells per coal particle. At sufficiently high initial cell concentrations, the surfaces of coal particles are nearly saturated by the cells and the maximum leaching rate is limited either by total external surface area of coal particles or by the concentration of pyritic sulfur in the coal phase. The maximum volumetric rate of pyritic sulfur removal (mg S/h cm(3) mixture) increases with the pulp density of coal and reaches a saturation level at high pulp densities (e.g. 45%). The maximum rate also increases with decreasing particle diameter in a hyperbolic form. Increases in adsorption coefficient or decreases in the desorption coefficient also result in considerable improvements in this rate. The model can be applied to other systems consisting of suspended solid substrate particles in liquid medium with microbial oxidation occurring on the particle surfaces (e.g., bacterial ore leaching). The results obtained from this model are in good agreement with published experimental data on microbial desulfurization of coal and bacterial ore leaching.  相似文献   

15.
The bioleaching mechanism of pyrite by the indigenous Thiobacillus thiooxidans was examined with the aid of scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of the pyrite surface. The presence of pyrite eliminated the lag phase during growth of this microorganism. This was due to the stimulatory effect on cell growth of the slight amount of Cu2+ that had leached from the pyrite. Zn2+ was found to be much more readily solubilized than Cu2+. The efficiency of bioleaching was four times higher than that of chemical leaching. SEM images provided evidence of direct cell attachment onto the pyrite surface, thereby enhancing the bioleaching rate. Furthermore, extracellular polymeric substances (EPSs) were found on the pyrite surface after 4 days of oxidation. AFM images showed that the pyrite surface area positively correlated with the oxidation rate. A combination of direct and indirect mechanism is probably responsible for the oxidation of pyrite by T. thiooxidans.  相似文献   

16.
Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans   总被引:2,自引:0,他引:2  
The kinetics of the bioleaching of ZnS concentrate by Thiobacillus ferrooxidans was studied in a well-mixed batch reactor. Experimental studies were made at 30 degrees C and pH 2.2 on adsorption of the bacteria to the mineral, ferric iron leaching, and bacterial leaching. The adsorption rate of the bacteria was fairly rapid in comparison with the bioleaching rate, indicating that the bacterial adsorption is at equilibrium during the leaching process. The adsorption equilibrium data were correlated by the Langmuir isotherm, which is a useful means for predicting the number of bacteria adsorbed on the mineral surface. The rate of chemical leaching varied with the concentration of ferric iron, and the first-order reaction rate constant was determined. Bioleaching in an iron-containing medium was found to take place by both direct bacterial attack on the sulfide mineral and indirect attack via ferric iron. In this case, the ferric iron was formed from the reaction product (ferrous iron) through the biological oxidation reaction. To develop rate expressions for the kinetics of bacterial growth and zinc leaching, the two bacterial actions were considered. The key parameters appearing in the rate equations, the growth yield and specific growth rate of adsorbed bacteria, were evaluated by curve fitting using the experimental data. This kinetic model allowed us to predict the liquid-phase concentrations of the leached zinc and free cells during the batch bioleaching process.  相似文献   

17.
In this research work the effect of pyrite type and graphite on the pyrite and sphalerite dissolution rate was investigated, using a mixed culture of moderately thermophilic microorganisms. Two samples of: fine granular surface pyrite and crystalline euhedral pyrite were prepared from black shale and copper porphyry deposits, respectively. Results indicated that granular surface pyrite dissolution rate and Fe(III) concentration are significantly higher than those of crystalline euhedral pyrite. As a result, higher Zn extraction improvement was observed in the presence of granular surface pyrite. Addition of graphite to the experiments enhanced the microorganism population in leaching solution and accelerated crystalline euhedral pyrite and sphalerite bioleaching rate. Using graphite in the experiments resulted in catalytic effect of crystalline pyrite and sphalerite, in which, with graphite, the Fe extraction increased from 25.57% to 59.84% and Zn extraction was improved from 22.17% to 53.37%, for 28 days of bioleaching. The catalytic effect of graphite on crystalline euhedral pyrite and also sphalerite bioleaching could be attributed to the rising of the microorganism population or galvanic interaction in which graphite acted as the cathode and accelerated the anodic dissolution of pyrite and sphalerite.  相似文献   

18.
The ferrous-iron oxidation kinetics of a bacterial culture consisting predominantly of Leptospirillum ferrooxidans were studied in continuous-flow bioreactors. The bacterial culture was fed with a salts solution containing 12 g/L ferrous-iron, at dilution rates ranging from 0.01 to 0.06 l/h, and temperatures ranging from 30 to 40 degrees C, at a pH of 1.75. The growth rate, and the oxygen and ferrous-iron utilization rates of the bacteria, were monitored by means of off-gas analysis and redox-potential measurement. The degree-of-reduction balance was used to compare the theoretical and experimental values of r(CO(2)), -r(O(2)) and -r(Fe(+2)), and the correlation found to be good. The maximum bacterial yield on ferrous-iron and the maintenance coefficient on ferrous-iron, were determined using the Pirt equation. An increase in the temperature from 30 to 40 degrees C did not appear to have an effect on either the maximum yield or maintenance coefficient on ferrous-iron. The average maximum bacterial yield and maintenance coefficient on ferrous-iron were found to be 0.0059 mmol C/mmol Fe(2+) and 0.7970 mmol Fe(2+)/mmol C)/h, respectively. The maximum specific growth rate was found to be 0.077 l/h. The maximum specific ferrous-iron utilization rate increased from 8.65 to 13.58 mmol Fe(2+)/mmol C/h across the range from 30 to 40 degrees C, and could be described using the Arrhenius equation. The kinetic constant in bacterial ferrous-iron oxidation increased linearly with increasing temperature. The ferrous-iron kinetics could be accurately described in terms of the ferric/ferrous-iron ratio by means of a Michaelis-Menten-based model modified to account for the effect of temperature. A threshold ferrous-iron level, below which no further ferrous-iron utilization occurred, was found at a ferric/ferrous-iron ratio of about 2500. At an overall iron concentration of 12 g/L, this value corresponds to a threshold ferrous-iron concentration of 78.5 x10(-3) mM.  相似文献   

19.
The relationships among surface energy, adsorbed organic matter, and attached bacterial growth were examined by measuring the degradation of adsorbed ribulose-1,5-bisphosphate carboxylase (a common algal protein) by attached bacteria (Pseudomonas strain S9). We found that surface energy (work of adhesion of water) determined the amount and availability of adsorbed protein and, consequently, the growth of attached bacteria. Percent degradation of adsorbed ribulose-1,5-bisphosphate carboxylase decreased with increasing hydrophobicity of the surface (decreasing work of adhesion). As a result, growth rates of attached bacteria were initially higher on hydrophilic glass than on hydrophobic polyethylene. However, during long (6-h) incubations, growth rates increased with surface hydrophobicity because of increasing amounts of adsorbed protein. Together with previous studies, these results suggest that the number of attached bacteria over time will be a complex function of surface energy. Whereas both protein adsorption and bacterial attachment decrease with increasing surface energy, availability of adsorbed protein and consequently initial bacterial growth rates increase with surface energy.  相似文献   

20.
We studied the dynamics of microbial communities attached to model aggregates (4-mm-diameter agar spheres) and the component processes of colonization, detachment, growth, and grazing mortality. Agar spheres incubated in raw seawater were rapidly colonized by bacteria, followed by flagellates and ciliates. Colonization can be described as a diffusion process, and encounter volume rates were estimated at about 0.01 and 0.1 cm(3) h(-1) for bacteria and flagellates, respectively. After initial colonization, the abundances of flagellates and ciliates remained approximately constant at 10(3) to 10(4) and approximately 10(2) cells sphere(-1), respectively, whereas bacterial populations increased at a declining rate to >10(7) cells sphere(-1). Attached microorganisms initially detached at high specific rates of approximately 10(-2) min(-1), but the bacteria gradually became irreversibly attached to the spheres. Bacterial growth (0 to 2 day(-1)) was density dependent and declined hyperbolically when cell density exceeded a threshold. Bacterivorous flagellates grazed on the sphere surface at an average saturated rate of 15 bacteria flagellate(-1) h(-1). At low bacterial densities, the flagellate surface clearance rate was approximately 5 x 10(-7) cm(2) min(-1), but it declined hyperbolically with increasing bacterial density. Using the experimentally estimated process rates and integrating the component processes in a simple model reproduces the main features of the observed microbial population dynamics. Differences between observed and predicted population dynamics suggest, however, that other factors, e.g., antagonistic interactions between bacteria, are of importance in shaping marine snow microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号