首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aerobic respiratory chain of Escherichia coli contains two terminal oxidases: the cytochrome d complex and the cytochrome o complex. Each of these enzymes catalyzes the oxidation of ubiquinol-8 within the cytoplasmic membrane and the reduction of molecular oxygen to water. Both oxidases are coupling sites in the respiratory chain; electron transfer from ubiquinol to oxygen results in the generation of a proton electrochemical potential difference across the membrane. The cytochrome d complex is a heterodimer (subunits I and II) that has three heme prosthetic groups. Previous studies characterized two monoclonal antibodies that bind to subunit I and specifically block the ability of the enzyme to oxidize ubiquinol. In this paper, the epitopes of both of these monoclonal antibodies have been mapped to within a single 11-amino acid stretch of subunit I. The epitope is located in a large hydrophilic loop between the fifth and sixth putative membrane-spanning segments. Binding experiments with these monoclonal antibodies show this polypeptide loop to be periplasmic. Such localization suggests that the loop may be close to His186, which has been identified as one of the axial ligands of cytochrome b558. Together, these data begin to define a functional domain in which ubiquinol is oxidized near the periplasmic surface of the membrane.  相似文献   

2.
The radiolabeled, photoreactive azido-ubiquinone derivative (azido-Q), 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyl-[3H]octyl)- 1,4-benzoquinone, was used to investigate the active site of ubiquinol oxidase activity of the cytochrome d complex, a two-subunit terminal oxidase of Escherichia coli. The azido-Q, when reduced by dithioerythritol, was shown to support enzymatic oxygen consumption by the cytochrome d complex that was 8% of the rate observed with ubiquinol-1. This observation provided the rationale behind further studies of the possible photoinactivation and labeling of the active site by this azido-Q. Ten min of photolysis of the purified cytochrome d complex in the presence of the azido-Q resulted in a 60% loss of the ubiquinol-1 oxidase activity. Uptake of the radiolabeled azido-Q by the cytochrome d complex was correlated to the photoinactivation of the ubiquinol-1 oxidase activity. Both increased linearly during the first 4 min of photolysis and reached 90% of the maximum within 10 min. Photolysis times longer than 10 min resulted in no increase in the maximum of 2 mol of azido-Q incorporated per mol of enzyme. The rate of azido-Q uptake by subunit I, but not subunit II, correlated well with the rate of loss of ubiquinol oxidase activity. Use of ubiquinol-0, which is not oxidized by the enzyme, to competitively inhibit radiolabeling of nonspecific binding sites, resulted in a significant decrease (42%) of azido-Q labeling of subunit II while it did not affect the labeling of subunit I. After photolysis for 4 min, the ratio of radiolabeled azido-Q in subunits I to II of the complex was 4.3 to 1.0. These observations support the conclusion that the ubiquinol substrate binding site is located on subunit I of the cytochrome d complex.  相似文献   

3.
The cytochrome o complex is a bo-type ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. This complex has a close structural and functional relationship with the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. The specific activity, subunit composition, and metal content of the purified cytochrome o complex are not consistent for different preparative protocols reported in the literature. This paper presents a relatively simple preparation of the enzyme starting with a strain of Escherichia coli which overproduces the oxidase. The pure enzyme contains four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Partial amino acid sequence data confirm the identities of subunit I, II, and III from the SDS-PAGE analysis as the cyoB, cyoA, and cyoC gene products, respectively. A slight modification of the purification protocol yields an oxidase preparation that contains a possible fifth subunit which may be the cyoE gene product. The pure four-subunit enzyme contains 2 equivs of iron but only 1 equiv of copper. There is no electron paramagnetic resonance detectable copper in the purified enzyme. Hence, the equivalent of CuA of the aa3-type cytochrome c oxidases is absent in this quinol oxidase. There is also no zinc in the purified quinol oxidase. Finally, monoclonal antibodies are reported that interact with subunit II. One of these monoclonals inhibits the quinol oxidase activity of the detergent-solubilized, purified oxidase. Hence, although subunit II does not contain CuA and does not interact with cytochrome c, it still must have an important function in the bo-type ubiquinol oxidase.  相似文献   

4.
The cytochrome d terminal oxidase complex is one of two terminal oxidases in the aerobic respiratory chain of Escherichia coli. Previous work has shown by dodecyl sulfate-polyacrylamide gel electrophoresis that this enzyme contains two subunits (I and II) and three cytochrome components, b558 , a1, and d. Reconstitution studies have demonstrated that the enzyme functions as a ubiquinol-8 oxidase and catalyzes an electrogenic reaction, i.e. turnover is accompanied by a charge separation across the membrane bilayer. In this paper, monoclonal and polyclonal antibodies were used to obtain structural information about the cytochrome d complex. It is shown that antibodies directed against subunit I effectively inhibit ubiquinol-1 oxidation by the purified enzyme in detergent, whereas antibodies which bind to subunit II have no effect on quinol oxidation. The oxidation rate of N,N,N',N'-tetramethyl-p-phenylenediamine, in contrast, is unaffected by antisubunit I antibodies, but is inhibited by antibodies against subunit II. It is concluded that the quinol oxidation site is on subunit I, previously shown to be the cytochrome b558 component of the complex, and that N,N,N',N'-tetramethyl-p-phenylenediamine oxidation occurs at a secondary site on subunit II. The antibodies were also used to analyze the results of a protein cross-linking experiment. Dimethyl suberimidate was used to cross-link the subunits of purified, solubilized oxidase. Immunoblot analysis of the products of this cross-linking clearly indicate that subunit II probably exists as a dimer within the complex. Finally, it is shown that the purified enzyme contains tightly bound lipopolysaccharide. This was revealed after discovering that one of the monoclonal antibodies raised against the purified complex is actually directed against lipopolysaccharide. The significance of this finding is not known.  相似文献   

5.
Cell respiration is catalyzed by the heme-copper oxidase superfamily of enzymes, which comprises cytochrome c and ubiquinol oxidases. These membrane proteins utilize different electron donors through dissimilar access mechanisms. We report here the first structure of a ubiquinol oxidase, cytochrome bo3, from Escherichia coli. The overall structure of the enzyme is similar to those of cytochrome c oxidases; however, the membrane-spanning region of subunit I contains a cluster of polar residues exposed to the interior of the lipid bilayer that is not present in the cytochrome c oxidase. Mutagenesis studies on these residues strongly suggest that this region forms a quinone binding site. A sequence comparison of this region with known quinone binding sites in other membrane proteins shows remarkable similarities. In light of these findings we suggest specific roles for these polar residues in electron and proton transfer in ubiquinol oxidase.  相似文献   

6.
We have mapped principal sites in the Escherichia coli RNA polymerase molecule that are exposed to attack by trypsin under limited proteolysis conditions. The 1342-amino acid-long beta subunit is alternatively cleaved at Arg903 or Lys909. The cleavage occurs adjacent to a dispensable domain (residues 940-1040) that is absent in the homologous RNA polymerase subunits from chloroplasts, eukaryotes, and archaebacteria. In E. coli, this region can be disrupted with genetic deletions and insertions without the loss of RNA polymerase function. Insertion of 127 amino acids into this region introduces a new highly labile site for trypsin proteolysis. The dispensable domain carries the epitope for monoclonal antibody PYN-6 (near residue 1000), which can be used for anchoring the catalytically active enzyme on a solid support. We also report the identification of a secondary trypsin cleavage at Arg81 of the beta' subunit within a putative zinc-binding domain that is conserved in prokaryotes and chloroplasts.  相似文献   

7.
The cytochrome o complex of the Escherichia coli aerobic respiratory chain is a ubiquinol oxidase. The enzyme consists of at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and contains two heme b prosthetic groups (b555 and b562) plus copper. The sequence of the cyo operon, encoding the subunits of the oxidase, reveals five open reading frames, cyoABCDE. This paper describes results obtained by expressing independently cyoA and cyoB in the absence of the other subunits of the complex. Polyclonal antibodies which react with subunits I and II of the purified oxidase demonstrate that cyoA and cyoB correspond to subunit II and subunit I, respectively, of the complex. These subunits are stably inserted into the membrane when expressed. Furthermore, expression of cyoB (subunit I) results in elevated heme levels in the membrane. Reduced-minus-oxidized spectra suggest that the cytochrome b555 component is present but that the cytochrome b562 component is not. This heme component is shown to bind to CO, as it does in the intact enzyme. Hence, subunit I alone is sufficient for the assembly of the stable CO-binding heme component of this oxidase.  相似文献   

8.
Cytochrome bd is a heterodimeric terminal ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. For understanding the unique catalytic mechanism of the quinol oxidation, mass spectrometry was used to identify amino acid residue(s) that can be labeled with a reduced form of 2-azido-3-methoxy-5-methyl-6-geranyl-1,4-benzoquinone or 2-methoxy-3-azido-5-methyl-6-geranyl-1,4-benzoquinone. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry demonstrated that the photo inactivation of ubiquinol-1 oxidase activity was accompanied by the labeling of subunit I with both azidoquinols. The cross-linked domain was identified by reverse-phase high performance liquid chromatography of subunit I peptides produced by in-gel double digestion with lysyl endopeptidase and endoproteinase Asp-N. Electrospray ionization quadrupole time-of-flight mass spectrometry determined the amino acid sequence of the peptide (m/z 1047.5) to be Glu(278)-Lys(283), where a photoproduct of azido-Q(2) was linked to the carboxylic side chain of I-Glu(280). This study demonstrated directly that the N-terminal region of periplasmic loop VI/VII (Q-loop) is a part of the quinol oxidation site and indicates that the 2- and 3-methoxy groups of the quinone ring are in the close vicinity of I-Glu(280).  相似文献   

9.
To probe the location of the quinol oxidation site and physical interactions for inter-subunit electron transfer, we constructed and characterized two chimeric oxidases in which subunit II (CyoA) of cytochrome bo-type ubiquinol oxidase from Escherichia coli was replaced with the counterpart (CaaA) of caa(3)-type cytochrome c oxidase from thermophilic Bacillus PS3. In pHNchi5, the C-terminal hydrophilic domain except a connecting region as to transmembrane helix II of CyoA was replaced with the counterpart of CaaA, which carries the Cu(A) site and cytochrome c domain. The resultant chimeric oxidase was detected immunochemically and spectroscopically, and the turnover numbers for Q(1)H(2) (ubiquinol-1) and TMPD (N,N, N',N'-tetramethyl-p-phenylenediamine) oxidation were 28 and 8.5 s(-1), respectively. In pHNchi6, the chimeric oxidase was designed to carry a minimal region of the cupredoxin fold containing all the Cu(A) ligands, and showed enzymatic activities of 65 and 5.1 s(-1), and an expression level better than that of pHNchi5. Kinetic analyses proved that the apparent lower turnover of the chimeric enzyme by pHNchi6 was due to the higher K(m) of the enzyme for Q(1)H(2) (220 microM) than that of cytochrome bo (48 microM), while in the enzyme by pHNchi5, both substrate-binding and internal electron transfer were perturbed. These results suggest that the connecting region and the C-terminal alpha(1)-alpha(2)-beta(11)-alpha(3) domain of CyoA are involved in the quinol oxidation and/or physical interactions for inter-subunit electron transfer, supporting our previous proposal [Sato-Watanabe, M., Mogi, T., Miyoshi, H., and Anraku, Y. (1998) Biochemistry 37, 12744-12752]. The close relationship of E. coli quinol oxidases to cytochrome c oxidase of Gram-positive bacteria like Bacillus was also indicated.  相似文献   

10.
Using limited proteolysis, we show that the hyperthermophilic topoisomerase I from Thermotoga maritima exhibits a unique hot spot susceptible to proteolytic attack with a variety of proteases. The remaining of the protein is resistant to further proteolysis, which suggests a compact folding of the thermophilic topoisomerase, when compared to its mesophilic Escherichia coli homologue. We further show that a truncated version of the T. maritima enzyme, lacking the last C-terminal 93 amino acids is more susceptible to proteolysis, which suggests that the C-terminal region of the topoisomerase may be important to maintain the compact folding of the enzyme. The hot spot of cleavage is located around amino acids 326-330 and probably corresponds to an exposed loop of the protein, near the active site tyrosine in charge of DNA cleavage and religation. Location of this protease sensitive region in the vicinity of bound DNA is consistent with the partial protection observed in the presence of different DNA substrates. Unexpectedly, although proteolysis splits the enzyme in two halves, each containing part of the motifs involved in catalysis, trypsin-digested topoisomerase I retains full DNA binding, cleavage, and relaxation activities, full thermostability and also the same hydrodynamic and spectral properties as undigested samples. This supports the idea that the two fragments which are generated by proteolysis remain correctly folded and tightly associated after proteolytic cleavage.  相似文献   

11.
M Finel 《FEBS letters》1988,236(2):415-419
Paracoccus oxidase containing only two subunits was subjected to proteolysis by trypsin and chymotrypsin. Both subunits of the purified enzyme were cleaved at only a few sites and enzymatic activity was not inhibited. The cleavage sites were identified by protein sequencing. Subunit I was cleaved near the amino-terminus and subunit II in the loop connecting the two predicted trans-membrane helices. In native membrane fragments, but not in intact spheroplasts, this loop was accessible to both proteases. These results provide experimental evidence for the folding of subunit II in the membrane.  相似文献   

12.
The cytochrome d terminal oxidase complex is one of two terminal oxidases which are components of the aerobic respiratory chain of Escherichia coli. This membrane-bound enzyme catalyzes the two-electron oxidation of ubiquinol and the four-electron reduction of oxygen to water. Enzyme turnover generates proton and voltage gradients across the bilayer. The oxidase is a heterodimer containing 2 mol of protoheme IX and 1 or 2 mol of heme d per mol of complex. To explain the functional properties of the enzyme, a simple model has been proposed in which it is speculated that the heme prosthetic groups define two separate active sites on opposite sides of the membrane at which the oxidation of quinol and the reduction of water, respectively, are catalyzed. This paper represents an initial effort to define the axial ligands of each of the three or four hemes within the amino acid sequence of the oxidase subunits. Each of the 10 histidine residues has been altered by site-directed mutagenesis with the expectation that histidine residues are likely candidates for heme ligands. Eight of the 10 histidine residues are not essential for enzyme activity, and 2 appear to function as heme axial ligands. Histidine 186 in subunit I is required for the cytochrome b558 component of the enzyme. This residue is likely to be located near the periplasmic surface of the membrane. Histidine 19, near the amino terminus of subunit I also appears to be a heme ligand. It is concluded that two of the four or five expected heme axial ligands have been tentatively identified, although further work is required to confirm these conclusions. A minimum of two additional axial ligands must be residues other than histidine.  相似文献   

13.
The cytochrome o complex is one of two ubiquinol oxidases in the aerobic respiratory system of Escherichia coli. This enzyme catalyzes the two-electron oxidation of ubiquinol-8 which is located in the cytoplasmic membrane, and the four-electron reduction of molecular oxygen to water. The purified oxidase contains at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and has been shown to couple electron flux to the generation of a proton motive force across the membrane. In this paper, the DNA sequence of the cyo operon, containing the structural genes for the oxidase, is reported. This operon is shown to encode five open reading frames, cyoABCDE. The gene products of three of these, cyoA, cyoB, and cyoC, are clearly related to subunits II, I, and III, respectively, of the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. This family of cytochrome c oxidases contain heme a and copper as prosthetic groups, whereas the E. coli enzyme contains heme b (protoheme IX) and copper. The most striking sequence similarities relate the large subunits (I) of both the E. coli quinol oxidase and the cytochrome c oxidases. It is likely that the sequence similarities reflect a common molecular architecture of the two heme binding sites and of a copper binding site in these enzymes. In addition, the cyoE open reading frame is closely related to a gene denoted ORF1 from Paracoccus dentrificans which is located in between the genes encoding subunits II and III of the cytochrome c oxidase of this organism. The function of the ORF1 gene product is not known. These sequence relationships define a superfamily of membrane-bound respiratory oxidases which share structural features but which have different functions. The E. coli cytochrome o complex oxidizes ubiquinol but has no ability to catalyze the oxidation of reduced cytochrome c. Nevertheless, it is clear that the E. coli oxidase and the aa3-type cytochrome c oxidases must have very similar structures, at least in the vicinity of the catalytic centers, and they are very likely to have similar mechanisms for bioenergetic coupling (proton pumping).  相似文献   

14.
We have analyzed the interaction of monoclonal antibodies against Escherichia coli RNA polymerase with products of its limited proteolysis. Two major proteolytic fragments of molecular masses 107 and 43 kDa originate as a result of a single cleavage in the vicinity of the 980th amino acid residue. Anti-beta subunit monoclonal antibody PYN-2 inhibiting RNA polymerase activity at the stage of RNA elongation reacts with an epitope located between the amino-terminus and the 50th amino acid residue of the beta subunit. DNA sequencing has shown that the RNA polymerase mutation rpoB22 converts the Gln(1111) codon of the beta subunit gene into the amber codon. An epitope for the monoclonal antibody PYN-6 was located between the major site of proteolytic cleavage and Gln(1111) of the beta subunit.  相似文献   

15.
Alkaline phosphatase (AP) displays significant structural changes during metal-ion binding, supporting cooperative interactions between the subunits of the dimeric enzyme. Here, we present data on the dynamic properties of AP from E. coli, and characterize the structural changes that accompany variations in metal-ion content, combining limited proteolysis and MALDI-TOF mass spectrometry. Limited proteolysis revealed an internal cleavage site at Arg-293, reflecting a position of conformational flexibility supporting subunit communication essential for catalysis. A specific shielding of a region distant from the metal-binding site has been demonstrated, implying transmission of conformational changes, induced by metal-ion binding to the adjacent subunit, across the subunit interface.  相似文献   

16.
A refinement of the protonmotive Q cycle mechanism is proposed in which oxidation of ubiquinol is a concerted reaction and occurs by an alternating, half-of-the-sites mechanism. A concerted mechanism of ubiquinol oxidation is inferred from the finding that there is reciprocal control between the high potential and low potential redox components involved in ubiquinol oxidation. The potential of the Rieske iron-sulfur protein controls the rate of reduction of the b cytochromes, and the potential of the b cytochromes controls the rate of reduction of the Rieske protein and cytochrome c(1). A concerted mechanism of ubiquinol oxidation reconciles the findings that the ubiquinol-cytochrome c reductase kinetics of the bc(1) complex include both a pH dependence and a dependence on Rieske iron-sulfur protein midpoint potential.An alternating, half-of-the-sites mechanism for ubiquinol oxidation is inferred from the finding that some inhibitory analogs of ubiquinol that block ubiquinol oxidation by binding to the ubiquinol oxidation site in the bc(1) complex inhibit the yeast enzyme with a stoichiometry of 0.5 per bc(1) complex. One molecule of inhibitor is sufficient to fully inhibit the dimeric enzyme, and the binding is anti-cooperative, in that a second molecule of inhibitor binds with much lower affinity to a dimer in which an inhibitor molecule is already bound. An alternating, half-of-the-sites mechanism implies that, at least under some conditions, only half of the sites in the dimeric enzyme are reactive at any one time. This provides a raison d'être for the dimeric structure of the enzyme, in that bc(1) activity may be regulated and capable of switching between a half-of-the-sites active and a fully active enzyme.  相似文献   

17.
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. We previously identified and purified an alternative oxidase, cytochrome bd-type quinol oxidase, from a mutant of Bacillus stearothermophilus defective in the caa3-type oxidase activity (J. Sakamoto et al., FEMS Microbiol. Lett. 143 (1996) 151-158). Compared with proteobacterial counterparts, B. stearothermophilus cytochrome bd showed lower molecular weights of the two subunits, shorter wavelength of alpha-band absorption maximum due to heme D, and lower quinol oxidase activity. Preincubation with menaquinone-2 enhanced the enzyme activity up to 40 times, suggesting that, besides the catalytic site, there is another quinone-binding site which largely affects the enzyme activity. In order to clarify the molecular basis of the differences of cytochromes bd between B. stearothermophilus and proteobacteria, the genes encoding for the B. stearothermophilus bd was cloned based on its partial peptide sequences. The gene for subunit I (cbdA) encodes 448 amino acid residues with a molecular weight of 50195 Da, which is 14 and 17% shorter than those of Escherichia coli and Azotobacter vinelandii, respectively, and CbdA lacks the C-terminal half of the long hydrophilic loop between the putative transmembrane segments V and VI (Q loop), which has been suggested to include the substrate quinone-binding site for the E. coli enzyme. The gene for subunit II (cbdB) encodes 342 residues with a molecular weight of 38992 Da. Homology search indicated that the B. stearothermophilus cbdAB has the highest sequence similarity to ythAB in B. subtilis genome rather than to cydAB, the first set of cytochrome bd genes identified in the genome. Sequence comparison of cytochromes bd and their homologs from various organisms demonstrates that the proteins can be classified into two subfamilies, a proteobacterial type including E. coli bd and a more widely distributed type including the B. stearothermophilus enzyme, suggesting that the latter type is evolutionarily older.  相似文献   

18.
R M Rakita  B R Michel  H Rosen 《Biochemistry》1989,28(7):3031-3036
A microbicidal system, mediated by neutrophil myeloperoxidase, inhibits succinate-dependent respiration in Escherichia coli at rates that correlate with loss of microbial viability. Succinate dehydrogenase, the initial enzyme of the succinate oxidase respiratory pathway, catalyzes the reduction of ubiquinone to ubiquinol, which is reoxidized by terminal oxidase complexes. The steady-state ratio of ubiquinol to total quinone (ubiquinol + ubiquinone) reflects the balance between dehydrogenase-dependent ubiquinone reduction and terminal oxidase-dependent ubiquinol oxidation. Myeloperoxidase had no effect on total quinone content of E. coli but altered the steady-state ratio of ubiquinol to total quinone. The ratio doubled for organisms incubated with the myeloperoxidase system for 10 min, suggesting decreased ubiquinol oxidase activity, which was confirmed by observation of a 50% decrease in oxidation of the ubiquinol analogue 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinol. Despite inhibition of ubiquinol oxidase, overall succinate oxidase activity remained unchanged, suggesting that succinate dehydrogenase activity was preserved and that the dehydrogenase was rate limiting. Microbial viability was unaffected by early changes in ubiquinol oxidase activity. Longer (60 min) exposure of E. coli to the myeloperoxidase system resulted in only modest further inhibition of the ubiquinol oxidase, but the ubiquinol to total quinone ratio fell to 0%, reflecting complete loss of succinate dehydrogenase activity. Succinate oxidase activity was abolished, and there was extensive loss of microbial viability. Early myeloperoxidase-mediated injury to ubiquinol oxidase appeared to be compensated for by higher steady-state levels of ubiquinol which sustained electron turnover by mass effect. Later myeloperoxidase-mediated injuries eliminated succinate-dependent ubiquinone reduction, through inhibition of succinate dehydrogenase, with loss of succinate oxidase activity, effects which were associated with, although not clearly causal for, microbicidal activity.  相似文献   

19.
The cytochrome bc(1) complex is a dimeric enzyme that links electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which ubiquinol is oxidized at one center in the enzyme, referred to as center P, and ubiquinone is re-reduced at a second center, referred to as center N. To understand better the mechanism of ubiquinol oxidation, we have examined the interaction of several inhibitory analogs of ubiquinol with the yeast cytochrome bc(1) complex. Stigmatellin and methoxyacrylate stilbene, two inhibitors that block ubiquinol oxidation at center P, inhibit the yeast enzyme with a stoichiometry of 0.5 per bc(1) complex, indicating that one molecule of inhibitor is sufficient to fully inhibit the dimeric enzyme. This stoichiometry was obtained when the inhibitors were titrated in cytochrome c reductase assays and in reactions of quinol with enzyme in which the inhibitors block pre-steady state reduction of cytochrome b. As an independent measure of inhibitor binding, we titrated the red shift in the optical spectrum of ferrocytochrome b with methoxyacrylate stilbene and thus confirmed the results of the inhibition of activity titrations. The titration curves also indicate that the binding is anti-cooperative, in that a second molecule of inhibitor binds with much lower affinity to a dimer in which an inhibitor molecule is already bound. Because these inhibitors bind to the ubiquinol oxidation site in the bc(1) complex, we propose that the yeast cytochrome bc(1) complex oxidizes ubiquinol by an alternating, half-of-the-sites mechanism.  相似文献   

20.
The cytochrome o complex is the predominant terminal oxidase in the aerobic respiratory chain of Escherichia coli when the bacteria are grown under conditions of high aeration. The oxidase is a ubiquinol oxidase and reduces molecular oxygen to water. Electron transport through the enzyme is coupled to the generation of a protonmotive force. The purified cytochrome o complex contains four or five subunits, two protoheme IX (heme b) prosthetic groups, plus at least one Cu. The subunits are all encoded by the cyo operon. Sequence comparisons show that the cytochrome o complex is closely related to the aa3-type cytochrome c oxidase family. Gene fusions have been used to define the topology of each of the gene products. Subunits I, II, III and IV are proposed to have 15, 2, 5 and 3 transmembrane spans, respectively. The fifth gene product (cyoE) encodes a protein with 7 membrane spanning segments, and this may also be a subunit of this enzyme. Fourier transform infrared spectroscopy has been used to monitor CO bound in the active site where oxygen is reduced. These data provide definitive proof that the cytochrome o complex has a heme-copper binuclear center, similar to that present in the aa3-type cytochrome c oxidases. Site-directed mutagenesis is being utilized to define which amino acids are ligands to the heme iron and copper prosthetic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号