首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Germin is a hydrogen peroxide generating oxalate oxidase with extreme thermal stability; it is involved in the defense against biotic and abiotic stress in plants. The structure, determined at 1.6 A resolution, comprises beta-jellyroll monomers locked into a homohexamer (a trimer of dimers), with extensive surface burial accounting for its remarkable stability. The germin dimer is structurally equivalent to the monomer of the 7S seed storage proteins (vicilins), indicating evolution from a common ancestral protein. A single manganese ion is bound per germin monomer by ligands similar to those of manganese superoxide dismutase (MnSOD). Germin is also shown to have SOD activity and we propose that the defense against extracellular superoxide radicals is an important additional role for germin and related proteins.  相似文献   

2.
Germin gene expression is induced in wheat (Triticum aestivum L.) leaves by powdery mildew (Erysiphe graminis f. sp. tritici) infection. Germin is a protein marker for early cereal development and is an oxalate oxidase, an enzyme that catalyzes the conversion of oxalate to CO2 and H2O2. The induction of germin gene expression by powdery mildew infection is consistent with the importance of H2O2 to plant defense and identifies a mechanism for the elevation of H2O2 levels in wheat leaves. Germin mRNA levels increased 2 d after inoculation of seedlings with powdery mildew and continued to increase throughout an 8-d time course. The increase in accumulation of germin mRNA was accompanied by an increase in the germin oligomer, which reached maximal levels by d 6. An increase in oxalate oxidase activity paralleled germin oligomer accumulation. Germin gene expression was induced in a relatively resistant cultivar (Bobwhite) as well as in a susceptible cultivar (Cheyenne), suggesting that the induction of germin gene expression is an indicator of powdery mildew infection rather than cultivar resistance.  相似文献   

3.
Germin and germin-like proteins (GLPs) are water soluble extracellular proteins reportedly expressed in response to some environmental and developmental signals. Some enzymatic activities have also been associated with germin/GLPs. However, their role in overall metabolism has not been fully understood. Significant insight into their function may also be gained by analysis of their promoter. During this study, about 1107 bp 5'region of OsRGLP2 gene was amplified, cloned and sequenced. The sequence analysis by BLAST showed that this promoter sequence has five common regions (CR1-CR5) of different sizes, which are repeated at 3-6 other locations in 30 kb region in which this gene driven by its promoter is located. Interestingly, all the genes driven by promoter harboring these common regions are GLPs/putative germins. Analysis of these common regions located on OsRGLP2 indicated presence of many elements including those for light responsiveness, dehydration and dark induced senescence, stresses (pathogen and salt), plant growth regulators, pollen specific expression and elements related to seed storage proteins. Analysis of the 30 kb germin/GLP clustered region by GenScan detected each gene to have a putative 40 bp promoter which contains TATA box and Dof factor which turned out to be a part of CR2.  相似文献   

4.
Germins and germin-like proteins (GLPs) constitute a ubiquitous family of plant proteins that seem to be involved in many developmental and stress-related processes. Wheat germin has been extensively studied at the biochemical level: it is found in the apoplast and the cytoplasm of germinating embryo cells and it has oxalate oxidase activity (EC 1.2.3.4). Germin synthesis can also be induced in adult wheat leaves by auxins and by a fungal pathogen but it remains to be determined whether the same gene is involved in developmental, hormonal and stress response. In this work, we have studied the expression of one of the wheat germin genes, named gf-2.8, in wheat as well as in transgenic tobacco plants transformed with either this intact gene or constructs with GUS driven by its promoter. This has allowed us to demonstrate that expression of this single gene is both developmentally and pathogen- regulated. In addition, we show that expression of the wheat gf-2.8 germin gene is also stimulated by some abiotic stresses, especially the heavy metal ions Cd2+, Cu2+ and Co2+. Several chemicals involved in stress signal transduction pathways were also tested: only polyamines were shown to stimulate expression of this gene. Because regulation of the wheat gf-2.8 germin gene is complex and because its product results in developmental and stress-related release of hydrogen peroxide in the apoplast, it is likely that it plays an important role in several aspects of plant growth and defence mechanisms.  相似文献   

5.
The wheat genome encodes a family of germin-like proteins that differ with respect to regulation and tissue specificity of expression of the corresponding genes. While germin exhibits oxalate oxidase (E.C. 1.2.3.4.) activity, the germin-like proteins (GLPs) have no known enzymatic activity. A role of oxalate oxidase in plant defence has been proposed, based on the capacity of the enzyme to produce H2O2, a reactive oxygen species. The role in defence of germin and other members of the germin-like gene family was functionally assessed in a transient assay system based on particle bombardment of wheat leaves. Transient expression of the pathogen-induced germin gf-2.8 gene, but not of the constitutively expressed HvGLP1 gene, reduced the penetration efficiency of Blumeria (syn. Erysiphe) graminis f.sp. tritici, the causal agent of wheat powdery mildew, on transformed cells. Two engineered germin-gf-2.8 genes and the TaGLP2a gene, which all encoded proteins without oxalate oxidase activity, also reduced the penetration efficiency of the fungus, demonstrating that oxalate oxidase activity is not required for conferring enhanced resistance. Instead, activity tagging experiments showed that in cells transiently expressing the germin gf-2.8 gene, the transgene product became insolubilized at sites of attempted fungal penetration where localised production of H2O2 was observed. Thus, germin and GLPs may play a structural role in cell-wall re-enforcement during pathogen attack.  相似文献   

6.
Effect of Salt Stress on Germin Gene Expression in Barley Roots   总被引:10,自引:0,他引:10       下载免费PDF全文
Germin gene expression in barley (Hordeum vulgare L.) seedlings responds to developmental and environmental cues. During seed germination, germin mRNA levels were maximal 2 d after the start of imbibition in control seedlings and declined to low levels by 6 d. When seeds were sown in the presence of 200 mM NaCl, germin mRNA levels were also maximal after 2 d, but NaCl treatment, which slowed seedling growth, prolonged germin gene expression for an additional 1 d. In 4-d-old seedlings, germin mRNA levels were highest in roots and higher in the vascular transition region than in shoots. In roots of 6-d-old seedlings, germin gene expression was regulated by salt shock and plant growth regulators. Induced germin mRNA levels were maximal 8 h after treatment with NaCl, salicylate, methyl salicylate, or methyl jasmonate and 4 h after treatment with abscisic acid and indoleacetic acid. Like germin mRNA, dehydrin mRNA levels were maximal 8 h after NaCl treatment. In contrast, peroxidase mRNA levels declined to less than control levels within 30 min of treatment. Germin gene expression is regulated developmentally by salt stress and by treatments with plant hormones. Since germin is an oxalate oxidase, these result imply that oxalate has important roles in plant development and homeostasis.  相似文献   

7.
Molecular investigations during wheat germination have revealed unique developmentally regulated proteins, designated as germins, which show remarkable resistance to broad specificity proteases and to dissociation in SDS. Germins in cereals have an oxalate oxidase activity, which generates H2O2 from the oxidative breakdown of oxalate thereby playing a significant role in plant development and defense. Germin like proteins (GLPs) exhibit sequence and structural similarity with the cereal germins but mostly lack oxalate oxidase activity. Germins and germin like proteins (GLPs) are a class of developmentally regulated glycoproteins characterized by a beta-barrel core structure, a signal peptide, and are associated with the cell wall. GLPs exhibit a broad range of diversity in their occurrence and activity in organisms ranging from myxomycetes, bryophytes, pteridophytes, gymnosperms and angiosperms. Germins and GLPs are thought to play a significant role during zygotic and somatic embryogenesis (wheat and Pinus, respectively), salt stress (barley and Mesembryanthemum crystallinum), pathogen elicitation (wheat and barley), and heavy metal stress, etc. Characterization and cloning of some of the genes encoding germins and GLPs has facilitated a better understanding of their regulation and raised their potential of biotechnological application.  相似文献   

8.
Polypeptide structure of germin as deduced from cDNA sequencing   总被引:6,自引:0,他引:6  
Synthesis of a relatively rare glycoprotein (germin) signals the onset of growth in germinating wheat embryos. Germin mRNA (1075 nucleotide residues) has an 85-residue 5'-untranslated sequence, a 69-residue sequence that can encode a 23-residue signal-peptide sequence, a 603-residue sequence that can encode a 201-residue mature-protein sequence, and a 318-residue 3'-untranslated sequence that begins with a UAA-terminator codon, ends with a 63-residue polyadenylate tract, and has three polyadenylation (and other, related) signals (AAUAAN etc.). One polyadenylation signal is just 9 nucleotides from the polyadenylation site, the shortest stretch of nucleotides yet found between polyadenylation signal and site in any animal or plant mRNA. The mature-protein coding sequence in germin mRNA contains an unusually high proportion (87%) of G + C in the third positions of its codons. The amino acid sequence of germin does not have extensive internal homologies or repetitions, and it is not characterized by regions of unusually high charge density, as is nucleoplasmin, another water-soluble homopentameric protein with otherwise closely related structural properties. Germin does, however, contain a stretch of 34 uncharged amino acid residues and these may possibly mediate its homopentameric structure and its remarkable resistance to enzymic proteolysis. In view of a possible association of germin with cellular membranes, the most interesting relatedness of the germin sequence to the sequences of other proteins is an 80% homology between a decapeptide sequence in mature germin and a decapeptide sequence in Escherichia coli glycerol-3-phosphate acyltransferase. The relation of germin-gene structure to overall gene regulation during early plant growth is discussed.  相似文献   

9.
10.
The present project aimed to isolate testa-, pericarp- and epicarp-specific gene promoters for the developing caryopsis of barley (Hordeum vulgare L.). These might be applied in transgenic plants to express antifungal agents or modify metabolic pathways. A testa-specific 379-nucleotide fragment was cloned by differential amplification and used to screen a bacterial artificial chromosome (BAC) library of 6.3 haploid genome equivalents. Fifty-three clones containing genes encoding for proteins of the germin family were found. Characterization of the clones identified a minimum of six seed coat- and eight leaf-specific germin genes. Four seed coat- and one leaf-specific genes were sequenced. The deduced primary structure of the proteins revealed a remarkable conservation of the manganese(II) binding His and Glu residues and β-barrel secondary structure of oxalate oxidase – also in barley, wheat, rice and Arabidopsis germins, for which an enzymatic activity has not yet been identified. The oxalate oxidase and germins of barley and other species are synthesized with a conserved pre-sequence of 23 or 24 amino acids for targeting into the cell wall. β-Glucuronidase expression with the barley germin F gene promoter occurs specifically in the testa and epicarp of the developing barley caryopsis, while expression with the B gene promoter is restricted to the testa. Oxalate oxidase activity is prominent in the epicarp and the root tips of the developing embryo. A family tree based on primary structure homologies of germins distinguishes three groups: oxalate oxidases, leaf-specific germins and seed coat-specific germins.  相似文献   

11.
Covalently bonded and adventitious glycans in germin   总被引:6,自引:0,他引:6  
Germin was previously shown to contain covalently bonded and adventitious glycans. The object of the present investigation was to characterize the two types of glycan. The presence of N- but not O-glycans in germin is indicated by the biosynthesis of altered forms, including an unglycosylated form of germin when wheat embryos are germinated in the presence of tunicamycin. After treating the doublet of germin pentamers (G and G') from normally germinated embryos with beta-N-acetylglucosaminidase, G is converted to a form that co-migrates with G' during electrophoresis in sodium dodecyl sulfate-polyacrylamide, but G' is unaffected. This suggests that the N-glycans in G contain antennary N-acetylglucosamine but that those in G' do not. This conclusion has been confirmed and elaborated by doubly labeling G and G' in vivo with [3H]glucosamine and [35S]methionine, and by characterizing sugar-labeled glycopeptides from G and G' by gel filtration, before and after their degradation by exoglycosidases. In the context of proven structures for the complex N-glycans in other plant glycoproteins, the findings, when combined with monosaccharide analyses of G and G', permit plausible speculation about the structure of the single N-glycan that is likely present in each G monomer (GlcNAc2(Man)2(Man-Xyl)(GlcNAc)(GlcNAc-Fuc] and G' monomer ((Man)2(Man-Xyl)(GlcNAc)(GlcNAc-Fuc)). The adventitious glycans, which can be removed by phenolic extraction of germin, have a composition similar to that expected for the characteristic hemicelluloses and pectins in monocot cell walls. The possible significance of this finding is discussed in relation to our continuing efforts to define the biochemical involvements of germin. In allied studies, affinity of its N-linked glycans for concanavalin A has been used to concentrate small amounts of germin from large volumes of wheat extract and to fractionate germin from tunicamycin-treated and normally germinated wheat embryos.  相似文献   

12.
13.
Oxalate oxidase activity was detected in situ during the development of barley seedlings. The presence of germin-like oxalate oxidase was confirmed by immunoblotting using an antibody directed against wheat germin produced in Escherichia coli, which is shown to cross-react with barley (Hordeum vulgare) oxalate oxidase and by enzymatic assay after electrophoresis of the protein extracts on polyacrylamide gels. In 3-d-old barley seedlings, oxalate oxidase is localized in the epidermal cells of the mature region of primary roots and in the coleorhiza. After 10 d of growth, the activity is detectable only in the coleorhiza. Moreover, we show that oxalate oxidase is induced in barley leaves during infection by the fungus Erysiphe graminis f. sp. hordei but not by wounding. Thus, oxalate oxidase is a new class of proteins that responds to pathogen attack. We propose that oxalate oxidase could have a role in plant defense through the production of H2O2.  相似文献   

14.
The 26 kilodalton, isoelectric point 6.3 and 6.5 (Gs1 and Gs2) polypeptides that increase in barley (Hordeum vulgare L.) roots during salt stress were isolated and identified. Both Gs1 and Gs2 had high sequence similarity to germin, a protein that increases significantly in germinating wheat seeds. Like germin, Gs1 and Gs2 were resistant to proteases and were glycosylated. Immunoblots were probed with antibodies to Gs1 and Gs2 to determine the distribution of these polypeptides among organs and cell-free fractions. Gs1 and Gs2 were present in roots and coleoptiles, but absent from leaves. In roots, Gs1 and Gs2 were present in the mature region, but not the tip. Gs1 and Gs2 increased in roots, but decreased in coleoptiles in response to salt stress. Gs1 and Gs2 were distributed among the soluble, microsomal, and cell wall fractions of roots, but the majority of Gs1 and Gs2 was present in the soluble fraction. Although Gs1 and Gs2 were heat stable, their synthesis was not affected by abscisic acid treatment. Gs2 accumulated during abscisic acid treatment, whereas Gs1 did not. However, a 25.5 kilodalton, isoelectric point 6.1 polypeptide that was immunologically related to Gs1 did accumulate with abscisic acid treatment.  相似文献   

15.
The comparative study of influence of exogenous salicylic (SaA) and succinic (SuA) acids on the production of reactive oxygen species by isolated wheat coleoptiles has been provided. Under the action of both acids the increase of generation of superoxide anion-radical (O2(.-)) was observed. This increase was partially suppressed by treatment of coleoptiles with inhibitors of peroxidase (salicylhydroxamic acid) and NADP H-oxidase (imidazole and alpha-naphthol). The increase of hydrogen peroxide content, activity of peroxidase and superoxide dismutase (SOD) was registered under the influence of SaA and SuA; catalase activity did not change essentially. The treatment of coleoptiles with the indicated acids resulted in the increase of their resistance to abiotic stress (damaging heating, 43 +/- 0,1 degrees C, 10 min). The conclusion is made, that the increase of O2(.-) generation in wheat coleoptiles under the action of SaA and SuA is related, probably, to the increase of apoplast peroxidase and NADP.H-oxidase activity, and the rise of H2O2 content is related to the growth of SOD activity. These enzymatic systems are involved in the induction of plant cells protective reactions to the hyperthermia.  相似文献   

16.
小麦胚芽鞘扩展蛋白特性及对水分胁迫的响应   总被引:3,自引:0,他引:3  
扩展蛋白是植物细胞壁延伸过程中的关键调节因子,在植物的生长发育以及对逆境的响应过程中起着重要作用。本文选用小麦(HF 9703)胚芽鞘为材料,采用Hepes法和SDS法分别提取小麦胚芽鞘扩展蛋白,通过改良的植物组织伸长测定仪测定其活性,并利用扩展蛋白抗体进行免疫印迹以检测其丰度,主要研究了小麦胚芽鞘扩展蛋白的特性及对水分胁迫的响应。结果表明:Hepes法提取的扩展蛋白活性较高,而SDS法的提取效率高;离体小麦胚芽鞘扩展蛋白的活性具有pH依赖性,且随缓冲液的交替更换(pH 4.5:pH 6.8)而反复逆转;扩展蛋白主要定位于细胞壁中;小麦胚芽鞘扩展蛋白和黄瓜下胚轴扩展蛋白具有交叉重组活性,但这种活性具有种属特异性。水分胁迫诱导小麦胚芽鞘扩展蛋白的活性和丰度提高,扩展蛋白活性的提高在小麦对水分胁迫的抗性方面可能具有重要作用。  相似文献   

17.
B G Lane 《FASEB journal》1991,5(14):2893-2901
Little more than a decade ago, 2-dimensional mapping of proteins and biochemical study of their allied coding elements (mRNA and DNA) were first used to probe possible changes in the embryo during seed germination. Because specification was of primary importance, our attention was initially directed toward the characterization of individual proteins and coding elements which, in preliminary surveys of the germinating wheat embryo, were found to be conspicuously subject to developmental regulation. Three of the proteins have become subjects of comprehensive investigations in this and other laboratories: the Em protein, the Ec protein, and germin. The Em and Ec proteins are encoded by the conserved mRNA 'stored' in the mature embryos of dry, field-ripened seeds but germin is encoded by the nascent mRNA formed after mature embryos are germinated in water. The Ec protein is the only bona fide Zn metallothionein yet found in higher plants. Studies of their biology and molecular biology suggest that the Em protein has a role in hormone-mediated (abscisic acid) cellular desiccation and that germin has a role in hormone-mediated (auxin) cellular hydration. It is projected that further studies of the Em protein may help elucidate the molecular basis for a loss of dessication tolerance during germination, and that further studies of germin may help elucidate the molecular basis of plant cell enlargement.  相似文献   

18.
19.
林莉  余小强  关雄  邵恩斯 《昆虫学报》2021,64(7):771-780
[目的]氨肽酶N(aminopeptidase N,APN)是昆虫消化系统中重要的蛋白酶.本研究旨在对在褐飞虱Nilaparvata lugens中肠中两个具有较高转录水平的apn基因(nlapn1和nlapn4)在中肠上皮细胞上的表达及其蛋白功能特性进行鉴定与分析.[方法]利用最大似然法进行褐飞虱NLAPN1和NLA...  相似文献   

20.
NMNAT-1 and PARP-1, two key enzymes in the NAD(+) metabolic pathway, localize to the nucleus where integration of their enzymatic activities has the potential to control a variety of nuclear processes. Using a variety of biochemical, molecular, cell-based, and genomic assays, we show that NMNAT-1 and PARP-1 physically and functionally interact at target gene promoters in MCF-7 cells. Specifically, we show that PARP-1 recruits NMNAT-1 to promoters where it produces NAD(+) to support PARP-1 catalytic activity, but also enhances the enzymatic activity of PARP-1 independently of NAD(+) production. Furthermore, using two-photon excitation microscopy, we show that NMNAT-1 catalyzes the production of NAD(+) in a nuclear pool that may be distinct from other cellular compartments. In expression microarray experiments, depletion of NMNAT-1 or PARP-1 alters the expression of about 200 protein-coding genes each, with about 10% overlap between the two gene sets. NMNAT-1 enzymatic activity is required for PARP-1-dependent poly(ADP-ribosyl)ation at the promoters of commonly regulated target genes, as well as the expression of those target genes. Collectively, our studies link the enzymatic activities of NMNAT-1 and PARP-1 to the regulation of a set of common target genes through functional interactions at target gene promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号